首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural differentiation of the guard cells of Vigna sinensis results from the integration of the following interrelated processes: a) intense activity of ribosomes, dictyosomes, endoplasmic reticulum (ER) membranes and mitochondria and patterned organization of microtubules; b) unequal thickening and ordered micellation of their walls and opening of the stomatal pore; and c) the divergent differentiation of the plastids. In differentiating guard cells, microtubules appear anticlinally oriented and more or less evenly distributed along the unthickened part of the dorsal wall and in the middle part of the ventral wall where thickening of the future pore occurs. In periclinal walls, microtubules fan away from the margins of the increasing thickening of the ventral wall and, later, from the rims of the stomatal pore towards the dorsal walls, parallel to the depositing radial microfibrils. Microtubules may be the cytoplasmic elements underlying guard-cell morphogenesis. Although cell-plate organization in guard-cell mother cells does not seem to differ from that of other protodermal cells, the middle lamella of the ventral wall becomes electron-translucent. The stomatal pore develops schizogenously from the internal and/or external ends of the ventral wall and proceeds inwards, remaining incomplete in most of the stomata of plants grown for 30 days in darkness and in some malformed ones which were developed after a prolonged action of colchicine. The guard cell, when approaching maturity, loses its organelle complexity and plasmodesmata, but it keeps a significant portion of its cytoplasm and organelles. Perigenous stomata generally exceed the size of mesoperigenous and mesogenous ones, develop large vacuoles and appear able to induce oriented divisions in their vicinity.  相似文献   

2.
Summary Using fluorescent probes and confocal laser scanning microscopy we have examined the organisation of the microtubule and actin components of the cytoskeleton in kidney-shaped guard cells of six species of Selaginella. The stomata of Selaginella exhibit novel cytoskeletal arrangements, and at different developmental stages, display similarities in microtubule organisation to the two major types of stomata: grass (dumbbell-shaped) and non-grass (kidney-shaped). Initially, cortical microtubules and F-actin radiate from the stomatal pore and extend across the external and internal periclinal cell surfaces of the guard cells. As the stomata differentiate, the cytoskeleton reorients only along the internal periclinal walls. Reorganisation is synchronous in guard cells of the same stoma. Microtubules on the inner periclinal walls of the guard cells now emanate from areas of the ventral wall on either side of the pore and form concentric circles around the pore. The rearrangement of F-actin is similar to that of microtubules although F-actin is less well organised. Radial arrays of both microtubules and F-actin are maintained adjacent to the external surfaces. Subsequently, in two of the six species of Selaginella examined, microtubules on both the internal and external walls become oriented longitudinally and exhibit no association with the ventral wall. In the other four species, microtubules adjacent to the internal walls revert to the initial radial alignment. These findings may have implications in the development and evolution of the stomatal complex.Abbreviations GC guard cell - MT microtubule  相似文献   

3.
The young guard cell of Selaginella inherits a single plastid from the division of the stomatal guard mother cell (GMC). During early stomatal development the single plastid undergoes a complex series of migrations and divisions. The regular pattern of plastid behavior appears to be an expression of the genetic program controlling division plane and cytomorphogenesis. The plastid in the GMC becomes precisely aligned with its midconstriction intersected by the plane of a preprophase band of microtubules (PPB) oriented parallel to the long axis of the leaf. This alignment with respect to the future division plane of the cytoplasm ensures equal plastid distribution to the daughter cells. Cytokinesis occurs in the plane previously marked by the PPB and the plastid in each daughter cell lies between the lateral wall and the newly formed nucleus. Following cytokinesis the plastid in each young guard cell develops a median constriction and migrates to the common ventral wall where the isthmus is associated with a system of microtubules in the vicinity of the developing pore region. Plastid division is completed while the plastid is adjacent to the common ventral wall. Following division, the two daughter plastids move back toward the lateral wall. Each plastid may divide again during guard cell maturation but no further migrations occur.  相似文献   

4.
Results of trials using chemical and enzymatic wall extractants for the removal of matrix materials for in situ observations of newly deposited microfibrils are described. Observations were then made of the orientation of microfibrils on the inner walls of differentiating and maturing fibres and parenchyma cells under the FESEM. Orientation changes were similar in both cell types. During very early primary wall development, deposition of microfibrils was in more or less axial alignment, which was later superseded by microfibrils in transverse orientation (90o to the long axis). A transverse orientation of microfibrils remained throughout much of primary wall synthesis, until an abrupt shift occurred to a sloped orientation during late primary wall synthesis. Microfibrils of the first secondary wall layer were in axial alignment or steeply sloped. In subsequent secondary wall deposition there was an alternation between a transverse and a sloped or axial alignment in maturing fibres and parenchyma cells.  相似文献   

5.
Summary The role of microtubules and ions in cell shaping was investigated in differentiating guard cells of Allium using light and electron microscopy and cytochemistry. Microtubules appear soon after cytokinesis in a discrete zone close to the plasmalemma adjacent to the common wall between guard cells. The microtubules fan out from this zone, which corresponds to the future pore site, towards the other sides of the cell. Soon new cellulose microfibrils are deposited on the wall adjacent to the microtubules and oriented parallel to them. As the wall thickens, the shape of the cell shifts from cylindrical to kidney-like. Studies with polarized light show that guard cells gradually assume a birefringence pattern during development characteristic of wall microfibrils radiating away from the pore site. Retardation increases from 10 Å when cells just begin to take shape, to 80–100 Å at maturity. Both microfibril and microtubule orientation remain constant during development. Observations on aberrant cells including those produced under the influence of drugs such as colchicine, which leads to loss of microtubules, abnormal wall thickenings and disruption of wall birefringence, further support the role of microtubules in cell shaping through their function in the localization of wall deposition and the orientation of cellulose microfibrils in the new wall layer. Potassium first appears in guard mother cells before division and rapidly accumulates afterwards during cell shaping, as judged by the cobaltinitrite reaction. Some chloride and perhaps organic acid anions also accumulate. Thus, these ions, which are known to play a role in the function of mature guard cells, also seem to be important in the early growth and shaping of these cells.Abbreviations IPC isopropyl-N-phenylcarbamate - CB cytochalasin B - GMC guard mother cell - MTOC microtubule organizing center  相似文献   

6.
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney‐shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin‐rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.  相似文献   

7.
Kim M  Hepler PK  Eun SO  Ha KS  Lee Y 《Plant physiology》1995,109(3):1077-1084
Stomatal movements, which regulate gas exchange in plants, involve pronounced changes in the shape and volume of the guard cell. To test whether the changes are regulated by actin filaments, we visualized microfilaments in mature guard cells and examined the effects of actin antagonists on stomatal movements. Immunolocalization on fixed cells and microinjection of fluorescein isothiocyanate-phalloidin into living guard cells of Commelina communis L. showed that cortical microfilaments were radially distributed, fanning out from the stomatal pore site, resembling the known pattern of microtubules. Treatment of epidermal peels with phalloidin prior to stabilizing microfilaments with m-maleimidobenzoyl N-hydroxysuccimimide caused dense packing of radial microfilaments and an accumulation of actin around many organelles. Both stomatal closing induced by abscisic acid and opening under light were inhibited. Treatment of guard cells with cytochalasin D abolished the radial pattern of microfilaments; generated sparse, poorly oriented arrays; and caused partial opening of dark-closed stomata. These results suggest that microfilaments participate in stomatal aperture regulation.  相似文献   

8.
Tobias I. Baskin 《Protoplasma》2001,215(1-4):150-171
Summary The hypothesis that microtubules align microfibrils, termed the alignment hypothesis, states that there is a causal link between the orientation of cortical microtubules and the orientation of nascent microfibrils. I have assessed the generality of this hypothesis by reviewing what is known about the relation between microtubules and microfibrils in a wide group of examples: in algae of the family Characeae,Closterium acerosum, Oocystis solitaria, and certain genera of green coenocytes and in land plant tip-growing cells, xylem, diffusely growing cells, and protoplasts. The salient features about microfibril alignment to emerge are as follows. Cellulose microfibrils can be aligned by cortical microtubules, thus supporting the alignment hypothesis. Alignment of microfibrils can occur independently of microtubules, showing that an alternative to the alignment hypothesis must exist. Microfibril organization is often random, suggesting that self-assembly is insufficient. Microfibril organization differs on different faces of the same cell, suggesting that microfibrils are aligned locally, not with respect to the entire cell. Nascent microfibrils appear to associate tightly with the plasma membrane. To account for these observations, I present a model that posits alignment to be mediated through binding the nascent microfibril. The model, termed templated incorporation, postulates that the nascent microfibril is incorporated into the cell wall by binding to a scaffold that is oriented; further, the scaffold is built and oriented around either already incorporated microfibrils or plasma membrane proteins, or both. The role of cortical microtubules is to bind and orient components of the scaffold at the plasma membrane. In this way, spatial information to align the microfibrils may come from either the cell wall or the cell interior, and microfibril alignment with and without microtubules are subsets of a single mechanism.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

9.
The organisation of membrane proteins into certain domains of the plasma membrane (PM) has been proposed to be important for signalling in yeast and animal cells. Here we describe the formation of a very distinct pattern of the K(+) channel KAT1 fused to the green fluorescent protein (KAT1::GFP) when transiently expressed in guard cells of Vicia faba. Using confocal laser scanning microscopy we observed a radially striped pattern of KAT1::GFP fluorescence in the PM in about 70% of all transfected guard cells. This characteristic pattern was found to be cell type and protein specific and independent of the stomatal aperture and the cytoskeleton. Staining of the cell wall of guard cells with Calcofluor White revealed a great similarity between the arrangement of cellulose microfibrils and the KAT1::GFP pattern. Furthermore, the radial pattern of KAT1::GFP immediately disappeared when turgor pressure was strongly decreased by changing from hypotonic to hypertonic conditions. The pattern reappeared within 15 min upon reestablishment of high turgor pressure in hypotonic solution. Evaluation of the staining pattern by a mathematical algorithm further confirmed this reversible abolishment of the radial pattern during hypertonic treatment. We therefore conclude that the radial organisation of KAT1::GFP depends on the close contact between the PM and cell wall in turgid guard cells. These results offer the first indication for a role of the cell wall in the localisation of ion channels. We propose a model in which KAT1 is located in the cellulose fibrils intermediate areas of the PM and discuss the physiological role of this phenomenon.  相似文献   

10.
Stomatal development and patterning in Arabidopsis leaves   总被引:1,自引:0,他引:1  
The functional unit for gas exchange between plants and the atmosphere is the stomatal complex, an epidermal structure composed of two guard cells, which delimit a stomatal pore, and their subsidiary cells. In the present work, we define the basic structural unit formed in Arabidopsis thaliana during leaf development, the anisocytic stomatal complex. We perform a cell lineage analysis by transposon excision founding that at least a small percentage of stomatal complexes are unequivocally non-clonal. We also describe the three-dimensional pattern of stomata in the Arabidopsis leaf. In the epidermal plane, subsidiary cells of most stomatal complexes contact the subsidiary cells of immediately adjacent complexes. This minimal distance between stomatal complexes allows each stoma to be circled by a full complement of subsidiary cells, with which guard cells can exchange water and ions in order to open or to close the pore. In the radial plane, stomata (and their precursors, the meristemoids) are located at the junctions of several mesophyll cells. This meristemoid patterning may be a consequence of signals that operate along the radial axis of the leaf, which establish meristemoid differentiation precisely at these places. Since stomatal development is basipetal, these radially propagated signals may be transmitted in the axial direction, thus guiding stomatal development through the basal end of the leaf.  相似文献   

11.
Multinet Growth in the Cell Wall of Nitella   总被引:4,自引:2,他引:4       下载免费PDF全文
  相似文献   

12.
This article explores root epidermal cell elongation and its dependence on two structural elements of cells, cortical microtubules and cellulose microfibrils. The recent identification of Arabidopsis morphology mutants with putative cell wall or cytoskeletal defects demands a procedure for examining and comparing wall architecture and microtubule organization patterns in this species. We developed methods to examine cellulose microfibrils by field emission scanning electron microscopy and microtubules by immunofluorescence in essentially intact roots. We were able to compare cellulose microfibril and microtubule alignment patterns at equivalent stages of cell expansion. Field emission scanning electron microscopy revealed that Arabidopsis root epidermal cells have typical dicot primary cell wall structure with prominent transverse cellulose microfibrils embedded in pectic substances. Our analysis showed that microtubules and microfibrils have similar orientation only during the initial phase of elongation growth. Microtubule patterns deviate from a predominantly transverse orientation while cells are still expanding, whereas cellulose microfibrils remain transverse until well after expansion finishes. We also observed microtubule-microfibril alignment discord before cells enter their elongation phase. This study and the new technology it presents provide a starting point for further investigations on the physical properties of cell walls and their mechanisms of assembly.  相似文献   

13.
Microtubule dynamics are involved in stomatal movement ofVicia faba L.   总被引:5,自引:0,他引:5  
R. Yu  R.-F. Huang  X.-C. Wang  M. Yuan 《Protoplasma》2001,216(1-2):113-118
Summary To obtain a full picture of microtubule (MT) behavior during the opening and closure of guard cells we have microinjected living guard cells ofVicia faba with fluorescent tubulin, examined fine detail by freeze shattering fixed cells, and used drug treatments to confirm aspects of MT dynamics. Cortical MTs in fully opened guard cells are transversely oriented from the ventral wall to the dorsal wall. When the stomatal aperture was decreased by darkness, these MTs became twisted and patched and broken down into diffuse fragments when stomata were closed. When the closed stomata were opened in response to light, the MTs in guard cells changed from the diffused, transitional pattern back to one in which MTs are transversely oriented from stomatal pore to dorsal wall. This observation indicates a linkage between these MT changes and stomatal movement. To confirm this, we used the MT-stabilizing agent taxol and the MT-depolymerizing herbicide oryzalin and observed their effects on the stomatal aperture and MT dynamics. Both drugs suppressed light-induced stomatal opening and dark-induced closure. MTs are known to be necessary for maintaining the static kidney shape of guard cells; the present data now show that the dynamic properties of polymeric tubulin accompany changes in shape with stomatal movement and may be functionally involved in stomatal movement.  相似文献   

14.
Summary A mature stomate of the water fernAzolla consists of a single apparently unspecialized annular guard cell (GC) with two nuclei surrounding an elongated pore aligned longitudinally in the leaf. During development, the guard mother cell develops a preprophase band (PPB) of microtubules (MTs) oriented transverse to the leaf axis. This is followed by a cell plate which fuses with the parental walls at the PPB site. Subsequently only the central part of the cell plate is consolidated, while the parts to either side become perforated and tenuous and may disperse completely, forming a single composite GC.Meanwhile, a dense array of MTs appears along both faces of the central part of the new wall, oriented normal to the leaf surface. Further MT arrays radiate out across the periclinal walls from the region of the consolidated cell plate. Putative MT nucleating sites are seen along the cell edges between these anticlinal and periclinal arrays. Polarized light microscopy reveals cellulose deposition parallel to the periclinal MT arrays. At the same time lamellar material is deposited within the new anticlinal wall. As the GC complex elongates, a split appears in these lamellae creating an initially transverse slit which then opens up to become first circular and ultimately an elongated pore aligned in the long axis of the leaf,i.e., at right angles to the wall in which it originated. The radiating pattern of cellulose microfibrils in the periclinal walls contributes to the shaping of the pore. Elongation at the apical and basal ends of the GC is restricted by longitudinal microfibril orientation, while that at the sides is facilitated by transverse alignment.  相似文献   

15.
Plant cell deformations are driven by cell pressurization and mechanical constraints imposed by the nanoscale architecture of the cell wall, but how these factors are controlled at the genetic and molecular levels to achieve different types of cell deformation is unclear. Here, we used stomatal guard cells to investigate the influences of wall mechanics and turgor pressure on cell deformation and demonstrate that the expression of the pectin-modifying gene PECTATE LYASE LIKE12 (PLL12) is required for normal stomatal dynamics in Arabidopsis thaliana. Using nanoindentation and finite element modeling to simultaneously measure wall modulus and turgor pressure, we found that both values undergo dynamic changes during induced stomatal opening and closure. PLL12 is required for guard cells to maintain normal wall modulus and turgor pressure during stomatal responses to light and to tune the levels of calcium crosslinked pectin in guard cell walls. Guard cell-specific knockdown of PLL12 caused defects in stomatal responses and reduced leaf growth, which were associated with lower cell proliferation but normal cell expansion. Together, these results force us to revise our view of how wall-modifying genes modulate wall mechanics and cell pressurization to accomplish the dynamic cellular deformations that underlie stomatal function and tissue growth in plants.  相似文献   

16.
An analysis of the mechanics of guard cell motion   总被引:13,自引:0,他引:13  
This paper presents a mechanical analysis of the cellular deformations which occur during the opening and closing of stomata. The aperture of the stomatal pore is shown to be a result of opposing pressures of the guard and adjacent epidermal cells. The analysis indicates that the epidermal cells have a mechanical advantage over the guard cells. With no mechanical advantage, an equal reduction in the turgor pressure of both guard and epidermal cells would have a neglible effect upon stomatal aperture. However, due to the mechanical advantage of the surrounding cells, the stomatal aperture increases with equal reductions in turgor, until the adjacent epidermal cells become flaccid. The minimum diffusion resistance of the pore occurs at this point. Further reductions in guard cell turgor lead to closure of the pore. The analysis further demonstrates how the shape, size, wall thickness and material properties of the guard cell walls influence their behavior.  相似文献   

17.
A central problem in plant biology is how cell expansion is coordinated with wall synthesis. We have studied growth and wall deposition in epidermal cells of dark-grown Arabidopsis hypocotyls. Cells elongated in a biphasic pattern, slowly first and rapidly thereafter. The growth acceleration was initiated at the hypocotyl base and propagated acropetally. Using transmission and scanning electron microscopy, we analyzed walls in slowly and rapidly growing cells in 4-d-old dark-grown seedlings. We observed thick walls in slowly growing cells and thin walls in rapidly growing cells, which indicates that the rate of cell wall synthesis was not coupled to the cell elongation rate. The thick walls showed a polylamellated architecture, whereas polysaccharides in thin walls were axially oriented. Interestingly, innermost cellulose microfibrils were transversely oriented in both slowly and rapidly growing cells. This suggested that transversely deposited microfibrils reoriented in deeper layers of the expanding wall. No growth acceleration, only slow growth, was observed in the cellulose synthase mutant cesA6(prc1-1) or in seedlings, which had been treated with the cellulose synthesis inhibitor isoxaben. In these seedlings, innermost microfibrils were transversely oriented and not randomized as has been reported for other cellulose-deficient mutants or following treatment with dichlorobenzonitrile. Interestingly, isoxaben treatment after the initiation of the growth acceleration in the hypocotyl did not affect subsequent cell elongation. Together, these results show that rapid cell elongation, which involves extensive remodeling of the cell wall polymer network, depends on normal cellulose deposition during the slow growth phase.  相似文献   

18.
狭基巢蕨叶表皮的结构和气孔器发育的观察   总被引:2,自引:0,他引:2  
周云龙  陈焱   《广西植物》1997,17(2):158-161
狭基巢蕨Neotopterisantrophyoides(Christ)Ching叶片的上表皮无气孔器,仅具表皮细胞,下表皮由表皮细胞和气孔器组成,气孔指数为2.5。上下表皮细胞和气孔器的细胞中均含有叶绿体。每个气孔器由2个肾形的保卫细胞和2~6个副卫细胞组成,其中以3个和4个副卫细胞的占绝大多数(3细胞的占45.1%,4细胞的占43.5%)。从发育上看,气孔器原始细胞进行2次分裂,产生2个保卫细胞和1个同源的副卫细胞。气孔器的发育过程大体可分为4个时期:(1)气孔器原始细胞的分化和分裂期;(2)保卫细胞母细胞成熟期;(3)保卫细胞母细胞分裂和气孔器幼期;(4)气孔器成熟期。狭基巢蕨的气孔器属于中周型  相似文献   

19.
Hwang JU  Lee Y 《Plant physiology》2001,125(4):2120-2128
In guard cells of open stomata under daylight, long actin filaments are arranged at the cortex, radiating out from the stomatal pore. Abscisic acid (ABA), a signal for stomatal closure, induces rapid depolymerization of cortical actin filaments and the slower formation of a new type of actin that is randomly oriented throughout the cell. This change in actin organization has been suggested to be important in signaling pathways involved in stomatal closing movement, since actin antagonists interfere with normal stomatal closing responses to ABA. Here we present evidence that the actin changes induced by ABA in guard cells of dayflower (Commelina communis) are mediated by cytosolic calcium levels and by protein phosphatase and protein kinase activities. Treatment of guard cells with CaCl2 induced changes in actin organization similar to those induced by ABA. Removal of extracellular calcium with EGTA inhibited ABA-induced actin changes. These results suggest that Ca2+ acts as a signal mediator in actin reorganization during guard cell response to ABA. A protein kinase inhibitor, staurosporine, inhibited actin reorganization in guard cells treated with ABA or CaCl2, and also increased the population of cells with long radial cortical actin filaments in untreated control cells. A protein phosphatase inhibitor, calyculin A, induced fragmentation of actin filaments in ABA- or CaCl2-treated cells and in control cells, and inhibited the formation of randomly oriented long actin filaments induced by ABA or CaCl2. These results suggest that protein kinase(s) and phosphatase(s) participate in actin remodeling in guard cells during ABA-induced stomatal closure.  相似文献   

20.
Closterium acerosum (Schrank) Ehrenberg cells cultured on cycles of 16 h light and 8 h dark, undergo cell division synchronously in the dark period. After cell division, the symmetry of the daughter semicells is restored by controlled expansion, the time required for this restoration, 3.5–4 h, being relatively constant. The restoration of the symmetry is achieved by highly oriented surface expansion occurring along the entire length of the new semicell. During early semicell expansion, for about 2.5 h, microfibrils are deposited parallel to one another and transversely to the cell axis on the inner surface of the new wall. Wall microtubules running parallel to the transversely oriented microfibrils are observed during this period. About 2.5 h after septum formation, preceding the cessation of cell elongation, bundles of 7–11 microfibrils running in various directions begin to overlay the parallel-arranged microfibrils already deposited. In the fully elongated cells, no wall microtubules are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号