首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of translocation of 14C-labeled photoassimilate were studied in the kelp, Alaria esculenta (L.) Grev., using a Geiger-Müller detector-probe to measure radioactivity in the source and sink regions of dumbbell-shaped explants cut from blades. Rapid tracer efflux from the source occurred for 4 days following a pulse of [14C]bicarbonate, with 40–60% of the initial activity remaining in the source after 10–14 days. Portions of source and sink tissue were analysed for distribution of radioactivity in mannitol, amino-acid, organic-acid and insoluble fractions. About 75% of the radioactivity in both source and sink at the end of the experiments was in soluble organic matter. The translocation velocity of the moving solute front (1.0-1.6 cm·h-1) was derived from time-course profiles of tracer arriving in Alaria sinks. Relative rates of translocation, calculated from these profiles, yielded skewed curves, with maximum rates of import by the sink occurring 72–96 h after the source was pulsed.  相似文献   

2.
Long-distance translocation of 125I in Laminaria saccharina (L.) Lamour. followed a “source to sink” pattern. When the source of 125I was placed on the distal mature part of the blade, the translocation was unidirectional, basipetal and directed towards the meristematic region at the blade-stipe junction. When the source was placed directly at the meristem there was no movement of label distal to the meristem. The velocity of125I transport ranged from 2 to 3.5 cm · h?1. The anion I? seemed to be the only species of125I transported. An assay of iodine content in different parts of L. saccharina plant showed much higher levels of iodine in the meristem, stipe and holdfast than in the blade. This distribution concurs well with the pattern of I? translocation.  相似文献   

3.
Movement of THO and tritium-labeled photoassimilate was studied in intact fronds and frond cuttings of Macrocystis integrifolia following labeling of a mature blade by tritiated water. Both THO and tritium-labeled assimilate moved from the source blade to sink areas at velocities comparable to those recorded earlier for 14C- and 32P-labeled compounds. In intact fronds and frond cuttings, THO and tritium-labeled assimilate showed a declining gradient with increasing distance from the source. In the exudate collected from the basal cut end of the frond, there was a marked increase in radioactivity with time in the photoassimilate, but no such gradient was evident for THO. These results support the idea that, although both tritium-labeled assimilate and THO move in the sieve elements, THO is rapidly exchanged with water in the tissues surrounding the sieve elements. Finally, it is shown that THO is transported to the sink and there “unloaded”; indeed, it can move out of the plant itself. The data on velocity and directionality of transport as well as unloading of THO at the sink are discussed, along with computations on specific mass transfer, and favor the idea that Münch's pressure-flow hypothesis is applicable in Macrocystis for long distance translocation of photoassimilates.  相似文献   

4.
Laboratory studies on blade growth in Alaria esculenta (L.) Grev. showed 3 periods of rapid blade elongation during the year: October–November, February–April and late June. The first two periods are characteristic of many Laminariales; the unique June peak may reflect local nutrient conditions. While the distal blade functions as a source, supplying organic matter to the blade meristem, the stipe can be a source during periods of rapid growth or a sink during late summer when blade growth is slow. Maximum enhancement of elongation rate of blade meristems was observed in 40–50 cm blades; longer blades showed no further increase in growth rate. This blade length-growth promotion relationship may be independent of seasonal variations in meristematic activity. 14C tracer experiments suggested that separate growth promotion effects by distal blade, sporophylls and stipe were not additive in the intact thallus. The preferential source of assimilate for blade meristem growth was the distal blade. Secondary sources: sporophylls, which were activated following excision of the primary source; and stipe, which began to translocate assimilate when both sources were removed. The role of secondary sources in nature is discussed. Profiles of radioactivity in alcohol-soluble organic matter in blades are evaluated in relation to tracer profiles in higher plants and mechanisms of translocation.  相似文献   

5.
Large pH gradients between the sources and the sinks involved in translocation of metabolites arise owing to photosynthesis and nitrate reduction in the leaves and respiration in the sinks. pH equalization between the sinks and the sources is proposed to be brought about by a rapid movement of H+ from sinks to sources along the negatively charged surfaces lining the translocation pathways and the ray symplast. This movement is made possible by a charge-compensating movement of K+ in the electrical double layer. In the sieve tubes and specially at the sieve plate pores the movement of K+ in the diffused layer is suggested as the driving force for translocation of metabolites. In the transport network of plants K+ moves in loops, acting like a conveyor belt in the phloem. The proposed mechanism explains all experimental observations related to translocation and also solves the problem of pH-stating in the source and sink cells. Its implications for shoot-root cooperation have been also indicated.  相似文献   

6.
Summary Translocation of 14C-labelled carbohydrates between the parent stolon and branches, and among branches, of Trifolium repens plants was investigated in two glasshouse experiments to determine patterns of physiological organisation in this clonal species. Differential defoliation treatments were applied to the parent stolon and/or branches to test the sensitivity of translocation to the short-term carbon needs of defoliated sinks. Strong reciprocal exchange of carbohydrate between the parent stolon and branches was observed, with 18 41% of the 14C exported from leaves on the parent stolon moving to branches, while branches simulta-neously exported 25% (for old source branches) to 54% (for young source branches) of the 14C they assimilated to the parent plant, including translocation to other branches. Branch-to-branch translocation occurred both acropetally and basipetally. Parent-to-branch, branch-to-parent and branch-to-branch carbon fluxes all increased in response to defoliation of the sink, at the expense of carbon supply to stolon tissue or roots of the source module. Reduced export to stolon tissue of the parent axis played a major role in facilitating C reallocation from leaves on the parent stolon to defoliated branches. The observed patterns of C allocation and translocation could be adequately explained by accepted source-sink theory, and are consistent with a high degree of intra-plant physiological integration in resource supply and utilisation. This information provides mechanistic explanations for aspects of the growth dynamics and ecological interactions of T. repens in the patchy environment of a grazed pasture.  相似文献   

7.
Salinity stress affects photosynthate partitioning between sources and sinks of plants, but how it affects these systems is less well understood. Because sources and sinks are closely tied, any adverse effect under suboptimal conditions on one of these is often misinterpreted for an effect on the other. Carbon partitioning is indispensable for stress resistance and good plant growth. In the present study, carbon partitioning in tomato plants (Lycopersicon esculentum L. cv. Momotarou) in a saline (NaCl) environment was studied by feeding radioactive 11C and stable 13C isotopes. Pulse-chases were conducted to measure the spatial and temporal distribution of 13C. 13C was measured by a standard conventional technique, but 11C distribution was monitored using a positron-emitting tracer imaging system (PETIS). Salt stress resulted in reduced carbon translocation toward roots. The majority of the photosynthate accumulated in the leaf. We also observed that the reduction in translocation of carbon occurred well before the salt stress symptoms of reduced photosynthesis and reduced plant growth in salt-exposed plants. The effect on sink activity was also shown by a decrease in stem diameter. In addition, PETIS analysis of 11C translocation indicated that carbon translocation to roots was inhibited under salt conditions without a direct effect on leaf Na accumulation or osmotic stress. These results suggest that NaCl has direct effects on plants, inhibiting carbon partitioning within a few hours of salt exposure without inhibition of source activity.  相似文献   

8.
Yang  Yuanhe  Shi  Yue  Sun  Wenjuan  Chang  Jinfeng  Zhu  Jianxiao  Chen  Leiyi  Wang  Xin  Guo  Yanpei  Zhang  Hongtu  Yu  Lingfei  Zhao  Shuqing  Xu  Kang  Zhu  Jiangling  Shen  Haihua  Wang  Yuanyuan  Peng  Yunfeng  Zhao  Xia  Wang  Xiangping  Hu  Huifeng  Chen  Shiping  Huang  Mei  Wen  Xuefa  Wang  Shaopeng  Zhu  Biao  Niu  Shuli  Tang  Zhiyao  Liu  Lingli  Fang  Jingyun 《中国科学:生命科学英文版》2022,65(5):861-895

Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (?0.2±0.9) Pg C yr?1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr?1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20–0.25 Pg C yr?1 in China during the past decades, and predict it to be 0.15–0.52 Pg C yr?1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.

  相似文献   

9.
Resource partitioning between shoot growth, storage and reproduction is poorly understood in many clonal plant species. This study documents seasonal patterns of growth, 14C-labelled photoassimilate distribution and remobilization in the invasive rhizomatous species Fallopia japonica (Japanese knotweed). Biomass accumulation above- and below-ground in F. japonica was rapid. By September, rhizome biomass had increased 18-fold from the initial harvest in May (representing 48% of total plant biomass) and this was maintained over winter. Patterns of 14C allocation from F. japonica shoots labelled at different times of year show that as the season progressed, the rhizomes became an increasingly important sink for current assimilate (the percentage of 14C recovered from rhizomes was 35% in August and 67% in September) and the corresponding retention of assimilate by established shoots declined. The percentage of 14C exported to roots was greatest in August. Relatively little photoassimilate was exported to other shoots on the plant, or to flowers. Recycling of photoassimilate was fairly tight in this species and 14C fixed by shoots in early May 1999 or September 1999 was remobilized to the rhizome prior to shoot senescence and death. Some of this 14C was then remobilized to new shoots early the following spring. These characteristics may contribute to the success of F. japonica in colonizing a variety of contrasting habitats, often with serious management implications.  相似文献   

10.
Summary We examined the capacity of the galling aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). A series of 14C-labeling experiments and a biomass allocation experiment showed that P. betae galls functioned as physiologic sinks, drawing in resources from surrounding plant sources. Early gall development was dependent on aphid sinks increasing allocation from storage reserves of the stem, and later development of the progeny within the gall was dependent on resources from the galled leaf blade and from neighboring leaves. Regardless of gall position within a leaf, aphids intercepted 14C exported from the galled leaf (a non-mobilized source). However, only aphid galls at the most basal site of the leaf were strong sinks for 14C fixed in neighboring leaves (a mobilized source). Drawing resources from neighboring leaves represents active herbivore manipulation of normal host transport patterns. Neighboring leaves supplied 29% of the 14C accumulating in aphids in basal galls, while only supplying 7% to aphids in distal galls. This additional resource available to aphids in basal galls can account for the 65% increase in progeny produced in basal galls compared to galls located more distally on the leaf and limited to the galled leaf as a food resource. Developing furits also act as skins and compete with aphid-induced sinks for food supply. Aphid success in producing galls was increased 31% when surrounding female catkins were removed.  相似文献   

11.
The shoot apex or fruitlets of Jonathan apple trees grafted on M IX rootstock and grown in pots in a greenhouse were exposed to14CO2 in an assimilation chamber. The translocation of14C-labelled assimilates from treated organs to other parts of the plant was studied. It was found that a very small amount of14C-labelled compounds was translocated from the shoot apex and very young fruitlets to the shoot stem. Preliminary chromatographic studies show that the chemical composition of the labelled substances detected below assimilation chamber differs profoundly from that of those remaining in the supplied leaves. The results support the view that there exists a translocation of some substances, possibly regulators from the sink to the donor.  相似文献   

12.
Robert Turgeon  J. A. Webb 《Planta》1973,113(2):179-191
Summary The capacity of a growing leaf blade of Cucurbita pepo L. to import 14C-labelled photoassimilate is lost in a basipetal direction. Import into the lamina tip stops when the blade is 10% expanded. Development of the leaf progresses linearly with time and the lamina base stops importing when the blade is 45% expanded. Export capacity also develops basipetally and follows immediately the loss of import capacity, at least in the lamina base. The small amount of material initially exported from the leaf tip is redistributed to the still-importing leaf base, delaying export from the lamina until the blade is 35% expanded. Loss of import capacity by the petiole is both basipetal and dorsoventral. The proximal, adaxial portion of the petiole is the last region to cease importing 14C. Leaves of Beta vulgaris L. and Nicotiana tabacum L. also lose import capacity in a basipetal direction.  相似文献   

13.
L. T. Evans  I. F. Wardlaw 《Planta》1966,68(4):310-326
Summary It is widely accepted that the floral stimulus produced in leaves is carried to the shoot apex passively in the phloem with the assimilate stream. Three kinds of evidence presented here suggest that the floral stimulus moves independently of the assimilates.Simultaneous determination of the velocities of translocation out of the seventh leaf blade, in comparable plants under the same conditions, yielded estimates of 1–2.4 cm/hr for the floral stimulus, and 77–105 cm/hr for 14C-labelled assimilates.The effect of the size of the seventh leaf on its ability to export assimilates or to initiate flowering was quite different. Leaves with only 14–26% of their final blade area emerged exported little assimilate, yet were highly active in inducing flowering.The effect of DCMU applications at a range of concentrations on the translocation of assimilates was quite different from their effect on the flowering response.  相似文献   

14.
We examined how the galling aphid Pemphigus batae manipulates resource translocation patterns of resistant and susceptible narrowleaf cottonwood Populus angustifolia. Using carbon-14 (14C)-labeling experiments in common garden trials, five patterns emerged. First, although aphid galls on resistant and susceptible genotypes did not differ in their capacity to intercept assimilates exported from the leaf they occupied, aphids sequestered 5.8-fold more assimilates from surrounding leaves on susceptible tree genotypes compared to resistant genotypes. Second, gall sinks on the same side of a shoot as a labeled leaf were 3.4-fold stronger than gall sinks on the opposite side of a shoot, which agrees with patterns of vascular connections among leaves of the same shoot (orthostichy). Third, plant genetic-based traits accounted for 26% of the variation in sink strength of gall sinks and 41% of the variation in sink strength of a plant’s own bud sinks. Fourth, tree susceptibility to aphid gall formation accounted for 63% of the variation in 14C import, suggesting strong genetic control of sink–source relationships. Fifth, competition between two galls was observed on a susceptible but not a resistant tree. On the susceptible tree distal aphids intercepted 1.5-fold more 14C from the occupied leaf than did basal aphids, but basal aphids compensated for the presence of a distal competitor by almost doubling import to the gall from surrounding leaves. These findings and others, aimed at identifying candidate genes for resistance, argue the importance of including plant genetics in future studies of the manipulation of translocation patterns by phytophageous insects.  相似文献   

15.
Summary The sink strength of one of a pair of competing peach fruits was increased when the fruit was treated with (2-chloroethyl)phosphonic acid (Ethephon) and gibberellic acid. Ethephon increased the capacity of the treated fruit to attract 14C-labelled assimilates at most stages of fruit development and was most effective when the level of endogenous ethylene produced by the fruit was lowest. The results are discussed in relation to the hypothesis that ethylene participates in the control of sink strength of the fruit and of other competing organs of the tree.  相似文献   

16.
HARVEY  D. M. 《Annals of botany》1974,38(2):327-335
In experiments using radioactive carbon dioxide (14CO2) a comparisonwas made of the 14C-photoassimilate translocation potentialsof two normal leaved (genotype AfAfTlTl) and two mutant formsof Pisum sativum (pea). A 14CO2 administration method is describedthat permitted 14C-translocation studies to be conducted underfield conditions. One of the mutants available produced tendrils in place of leaves(afafTlTl). The other mutant studied was without tendrils buthad a much branched petiole with numerous relatively minuteleaflets (afaftltl). These mutants and the normal-leaved cultivarswith which they were compared were not isogenic lines. Lengthybackcrossing would be required before full assessment couldbe made of the possible agronomic value of such mutations. An interim evaluation of these mutants was based on 14C-distributionassays that were conducted 48 h after feeding 14CO2, to specifiedleaves. The indication was that in translocation terms the leafand pod had a well defined respective source and sink relationshipthat was independent of leaf morphology. In each case the podswhich constituted the major 14C sinks depended on which leafhad been fed 14CO2. With regard to sink specific activity asdefined by the quantity of 14C incorporated per unit dry weightof pod, the mutants were not significantly different from normal. The implication of these findings was that fundamental changesin pea leaf morphology could be made genetically without a markedeffect on the photoassimilate export potential of the leaf.  相似文献   

17.
高等植物光合同化物的运输与分配   总被引:17,自引:2,他引:15  
高等植物光合同化物的运输受维管束发育状况影响较大,有时会限制产量。而同化物在各库器官间的分配主要决定于库本身的特性,它常用库强度和优先权来描述。库强度是库容量和库活力的乘积,库容量用细胞数目来度量,而库活力常用相对生长速度来度量。近年来人们也用酶少戌一来度量库活力或库强度。而库的优先权描述的是各库器官需求同化物的优先次序,种子被认为是优等权最高的库。同化物的运输分配不仅决定于植物本身源、流、库的特  相似文献   

18.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

19.
We develop an approach for estimating net ecosystem exchange (NEE) using inventory‐based information over North America (NA) for a recent 7‐year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non‐fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a ?327 ± 252 TgC yr?1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (?248 TgC yr?1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (?297 TgC yr?1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr?1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr?1) due to land use change between 1993 and 2002. We compare these inventory‐based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental‐scale NEE estimate for each ensemble is ?511 TgC yr?1 and ?931 TgC yr?1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional ?239 TgC yr?1 to the inventory‐based NA sink estimate, thus suggesting some convergence with the modeling approaches.  相似文献   

20.
Tropospheric ozone (O3 causes significant disruption of growth and yield in upland and Pima cottons. Pima cotton (Gossypium barbadense L.) was exposed to brief pulses (0.75 h) of a range of O3 concentrations (nominally 0.0, 0.2, 0.5, and 0.8 l l-1) to investigate effects of phloem translocation of 14C-labelled recent photoassimilate. The initial phase of rapid efflux from source leaves was monitored with a Geiger-Muller Tube as activity remaining in the leaf as a function of time. Visual inspection of unprocessed efflux curves revealed disruption of efflux by O3. Single exponential decay functions were fitted to these efflux curves to extract first order rate constants for phloem leading and longitudinal transport of labelled carbohydrates. A single compartment model was applied, with and without an asymptote of non-transported carbohydrate, to calculate leaf sugar contents. The effect of O3 in retarding efflux of label, decreasing the rate constant, and increasing calculated soluble sugar pools, was consistent regardless of the method of analysis. Following incorporation of the asymptote, calculated rate constants and sugar pools were similar to values from the literature and to preliminary measurements of sugar contents in O3-treated cotton leaves. Total carbohydrate transported from source leaves was reduced both by O3 effects on assimilation (up to 205) and by O3 effects on efflux (up to 70%), but was clearly dominated by the impact on phloem translocation. These rapid efflux kinetics likely reflect oxidant damage at the plasmalemma or plasmodesmata of mesophyll or phloem companion cells. Evaluation of effects of O3 on tonoplast function and consequences for carbohydrate translocation await a more complete compartmental efflux analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号