首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the pyrophosphorylation of 6-hydroxymethyl-7,8-dihydropterin (HMDP) by ATP to form 6-hydroxymethyl-7,8-dihydropterin pyrophosphate, an intermediate in the pathway for folic acid biosynthesis. The enzyme has been identified as a potential target for antimicrobial drugs. Equilibrium binding studies showed that Escherichia coli HPPK-bound ATP or the nonhydrolyzable ATP analogue alpha, beta-methyleneadenosine triphosphate (AMPCPP) with high affinity. The fluorescent ATP analogue 2'(3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (MANT-ATP) exhibited a substantial fluorescence enhancement upon binding to HPPK, with an equilibrium dissociation constant comparable with that for ATP (10.4 and 4.5 micrometer, respectively). The apoenzyme did not bind the second substrate HMDP, however, unless AMPCPP was present, suggesting that the enzyme binds ATP first, followed by HMDP. Equilibrium titration of HPPK into HMDP and AMPCPP showed an enhancement of fluorescence from the pterin ring of the substrate, and a dissociation constant of 36 nm was deduced for HMDP binding to the HPPK.AMPCPP binary complex. Stopped flow fluorimetry measurements showed that the rate constants for the binding of MANT-ATP and AMPCPP to HPPK were relatively slow (3.9 x 10(5) and 1.05 x 10(5) m(-1) s(-1), respectively) compared with the on rate for binding of HMDP to the HPPK.AMPCPP binary complex. The significance of these results with respect to the crystal structures of HPPK is discussed.  相似文献   

2.
Li Y  Gong Y  Shi G  Blaszczyk J  Ji X  Yan H 《Biochemistry》2002,41(27):8777-8783
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HMDP). Because HPPK is essential for microorganisms but is absent from human and animals, the enzyme is an excellent target for developing antimicrobial agent. Thermodynamic analysis shows that Mg(2+) is important not only for the binding of nucleotides but also for the binding of HMDP. Transient kinetic analysis shows that a step or steps after the chemical transformation are rate-limiting in the reaction catalyzed by HPPK. The pre-steady-state kinetics is composed of a burst phase and a steady-state phase. The rate constant for the burst phase is approximately 50 times larger than that for the steady-state phase. The latter is very similar to the k(cat) value measured by steady-state kinetics. A set of rate constants for the individual steps of the HPPK-catalyzed reaction has been determined by a combination of stopped-flow and quench-flow analyses. These results form a thermodynamic and kinetic framework for dissecting the roles of active site residues in the substrate binding and catalysis by HPPK.  相似文献   

3.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthetic pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin. The enzyme is essential for microorganisms, is absent from humans, and is not the target for any existing antibiotics. Therefore, HPPK is an attractive target for developing novel antimicrobial agents. Previously, we characterized the reaction trajectory of HPPK-catalyzed pyrophosphoryl transfer and synthesized a series of bisubstrate analog inhibitors of the enzyme by linking 6-hydroxymethylpterin to adenosine through 2, 3, or 4 phosphate groups. Here, we report a new generation of bisubstrate analog inhibitors. To improve protein binding and linker properties of such inhibitors, we have replaced the pterin moiety with 7,7-dimethyl-7,8-dihydropterin and the phosphate bridge with a piperidine linked thioether. We have synthesized the new inhibitors, measured their K(d) and IC(50) values, determined their crystal structures in complex with HPPK, and established their structure-activity relationship. 6-Carboxylic acid ethyl ester-7,7-dimethyl-7,8-dihydropterin, a novel intermediate that we developed recently for easy derivatization at position 6 of 7,7-dimethyl-7,8-dihydropterin, offers a much high yield for the synthesis of bisubstrate analogs than that of previously established procedure.  相似文献   

4.
Blaszczyk J  Li Y  Shi G  Yan H  Ji X 《Biochemistry》2003,42(6):1573-1580
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. Arginine residues 82 and 92, strictly conserved in 35 HPPK sequences, play dynamic roles in the catalytic cycle of the enzyme. At 0.89-A resolution, two distinct conformations are observed for each of the two residues in the crystal structure of the wild-type HPPK in complex with two HP variants, two Mg(2+) ions, and an ATP analogue. Structural information suggests that R92 first binds to the alpha-phosphate group of ATP and then shifts to interact with the beta-phosphate as R82, which initially does not bind to ATP, moves in and binds to alpha-phosphate when the pyrophosphoryl transfer is about to occur. The dynamic roles of R82 and R92 are further elucidated by five more crystal structures of two mutant proteins, R82A and R92A, with and without bound ligands. Two oxidized forms of HP are observed with an occupancy ratio of 0.50:0.50 in the 0.89-A structure. The oxidation of HP has significant impact on its binding to the protein as well as the conformation of nearby residue W89.  相似文献   

5.
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the Mg(2+)-dependent pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). The reaction follows a bi-bi mechanism with ATP as the first substrate and AMP and HP pyrophosphate (HPPP) as the two products. HPPK is a key enzyme in the folate biosynthetic pathway and is essential for microorganisms but absent from mammals. For the HPPK-catalyzed pyrophosphoryl transfer, a reaction coordinate is constructed on the basis of the thermodynamic and transient kinetic data we reported previously, and the reaction trajectory is mapped out with five three-dimensional structures of the enzyme at various liganded states. The five structures are apo-HPPK (ligand-free enzyme), HPPK.MgATP(analog) (binary complex of HPPK with its first substrate) and HPPK.MgATP(analog).HP (ternary complex of HPPK with both substrates), which we reported previously, and HPPK.AMP.HPPP (ternary complex of HPPK with both product molecules) and HPPK.HPPP (binary complex of HPPK with one product), which we present in this study.  相似文献   

6.
The gene encoding the 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase of Haemophilus influenzae has been cloned and expressed in Escherichia coli. A complex of the purified protein with a substrate analog has been crystallized and its structure solved by multiple anomalous dispersion using phase information obtained from a single crystal of selenomethione-labeled protein. The enzyme folds into a four-stranded antiparallel beta-sheet flanked on one side by two alpha-helices and on the other by three consecutive alpha-helices, giving a novel beta1alpha1beta2beta3alpha2beta4alpha3alpha4alpha5 polypeptide topology. The three-dimensional structure of a binary complex has been refined at 2.1 A resolution. The location of the substrate analog and a sulfate ion gives important insight into the molecular mechanism of the enzyme.  相似文献   

7.
Enzymatic catalysis has conflicting structural requirements of the enzyme. In order for the enzyme to form a Michaelis complex, the enzyme must be in an open conformation so that the substrate can get into its active center. On the other hand, in order to maximize the stabilization of the transition state of the enzymatic reaction, the enzyme must be in a closed conformation to maximize its interactions with the transition state. The conflicting structural requirements can be resolved by a flexible active center that can sample both open and closed conformational states. For a bisubstrate enzyme, the Michaelis complex consists of two substrates in addition to the enzyme. The enzyme must remain flexible upon the binding of the first substrate so that the second substrate can get into the active center. The active center is fully assembled and stabilized only when both substrates bind to the enzyme. However, the side-chain positions of the catalytic residues in the Michaelis complex are still not optimally aligned for the stabilization of the transition state, which lasts only approximately 10(-13) s. The instantaneous and optimal alignment of catalytic groups for the transition state stabilization requires a dynamic enzyme, not an enzyme which undergoes a large scale of movements but an enzyme which permits at least a small scale of adjustment of catalytic group positions. This review will summarize the structure, catalytic mechanism, and dynamic properties of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and examine the role of protein conformational dynamics in the catalysis of a bisubstrate enzymatic reaction.  相似文献   

8.
Shi G  Shaw G  Li Y  Wu Y  Yan H  Ji X 《Bioorganic & medicinal chemistry》2012,20(14):4303-4309
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthesis pathway catalyzing the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin, is an attractive target for developing novel antimicrobial agents. Previously, we studied the mechanism of HPPK action, synthesized bisubstrate analog inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed a new generation of bisubstrate inhibitors by replacing the phosphate bridge with a piperidine-containing linkage. To further improve linker properties, we have synthesized a new compound, characterized its protein binding/inhibiting properties, and determined its structure in complex with HPPK. Surprisingly, this inhibitor exhibits a new binding mode in that the adenine base is flipped when compared to previously reported structures. Furthermore, the side chain of amino acid residue E77 is involved in protein-inhibitor interaction, forming hydrogen bonds with both 2' and 3' hydroxyl groups of the ribose moiety. Residue E77 is conserved among HPPK sequences, but interacts only indirectly with the bound MgATP via water molecules. Never observed before, the E77-ribose interaction is compatible only with the new inhibitor-binding mode. Therefore, this compound represents a new direction for further development.  相似文献   

9.
Blaszczyk J  Li Y  Wu Y  Shi G  Ji X  Yan H 《Biochemistry》2004,43(6):1469-1477
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphoryl group from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP) following an ordered bi-bi mechanism with ATP as the first substrate. The rate-limiting step of the reaction is product release, and the complete active center is assembled and sealed only upon the binding of both ATP and HP. The assembly of the active center involves large conformational changes in three catalytic loops, among which loop 3 undergoes the most dramatic and unusual changes. To investigate the roles of loop 3 in catalysis, we have made a deletion mutant, which has been investigated by biochemical and X-ray crystallographic analysis. The biochemical data showed that the deletion mutation does not have significant effects on the dissociation constants or the rate constants for the binding of the first substrate MgATP or its analogues. The dissociation constant of HP for the mutant increases by a factor of approximately 100, which is due to a large increase in the dissociation rate constant. The deletion mutation causes a shift of the rate-limiting step in the reaction and a decrease in the rate constant for the chemical step by a factor of approximately 1.1 x 10(5). The crystal structures revealed that the deletion mutation does not affect protein folding, but the catalytic center of the mutant is not fully assembled even upon the formation of the ternary complex and is not properly sealed. The results together suggest that loop 3 is dispensable for the folding of the protein and the binding of the first substrate MgATP, but is required for the assembling and sealing of the active center. The loop plays an important role in the stabilization of the ternary complex and is critical for catalysis.  相似文献   

10.
Li Y  Wu Y  Blaszczyk J  Ji X  Yan H 《Biochemistry》2003,42(6):1581-1588
The roles of a pair of conserved positively charged residues R82 and R92 at a catalytic loop of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) have been investigated by site-directed mutagenesis and biochemical analysis. In the structure of HPPK in complex with ATP and a 6-hydroxymethyl-7,8-dihydropterin (HP) analogue, the guanidinium group of R82 forms two hydrogen bonds with the alpha-phosphate and that of R92 two hydrogen bonds with the beta-phosphate. In the structure of HPPK in complex with alpha,beta-methyleneadenosine triphosphate (AMPCPP, an ATP analogue) and HP, the guanidinium group of R82 has no direct interaction with AMPCPP and that of R92 forms two hydrogen bonds with the alpha-phosphate. Substitution of R82 with alanine caused a decrease in the rate constant for the chemical step by a factor of approximately 380, but there were no significant changes in the binding energy or binding kinetics of either substrate. Substitution of R92 with alanine caused a decrease in the rate constant for the chemical step by a factor of approximately 3.5 x 10(4). The mutation caused no significant changes in the binding energy or binding kinetics of MgATP. It did not cause a significant change in the binding energy of HP either but caused a decrease in the association rate constant for the binding of HP by a factor of approximately 4.5 and a decrease in the dissociation rate constant by a factor of approximately 10. The overall structures of the ternary complexes of both mutants were very similar to the corresponding structure of wild-type HPPK as described in the companion paper. The results suggest that R82 does not contribute to the binding of either substrate, and R92 is dispensable for the binding of MgATP but plays a role in facilitating the binding of HP. Both R82 and R92 are important for catalysis, and R92 plays a critical role in the transition state stabilization.  相似文献   

11.
Li G  Felczak K  Shi G  Yan H 《Biochemistry》2006,45(41):12573-12581
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), leading to the biosynthesis of folate cofactors. HPPK undergoes dramatic conformational changes during its catalytic cycle, and the conformational changes are essential for enzymatic catalysis. Thus, the enzyme is not only an attractive target for developing antimicrobial agents but also an excellent model system for studying the catalytic mechanism of enzymatic pyrophosphoryl transfer as well as the role of protein dynamics in enzymatic catalysis. In the present study, we report the NMR solution structures of the binary complex HPPK*MgAMPCPP and the ternary complex HPPK*MgAMPCPP*DMHP, where alpha,beta-methyleneadenosine triphosphate (AMPCPP) and 7, 7-dimethyl-6-hydroxypterin (DMHP) are the analogues of the substrates ATP and HP, respectively. The results suggest that the three catalytic loops of the binary complex of HPPK can assume multiple conformations in slow exchanges as evidenced by multiple sets of NMR signals for several residues in loops 2 and 3 and the very weak or missing NH cross-peaks for several residues in loops 1 and 3. However, the ternary complex shows only one set of NMR signals, and the cross-peak intensities are rather uniform, suggesting that the binding of the second substrate shifts the multiple conformations of the binary complex to an apparently single conformation of the ternary complex. The NMR behaviors and conformations of the binary complex HPPK*MgAMPCPP are significantly different from those of HPPK in complex with Mgbeta,gamma-methyleneadenosine triphosphate (MgAMPPCP). It is suggested that the conformational properties of the binary substrate complex HPPK*MgATP be represented by those of HPPK*MgAMPCPP, because MgAMPCPP is a better MgATP analogue for HPPK with respect to both binding affinity and bound conformation.  相似文献   

12.
The enzymes dihydroneopterin aldolase (DHNA) and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyse two consecutive steps in the biosynthesis of folic acid. Neither of these enzymes has a counterpart in mammals, and they have therefore been suggested as ideal targets for antimicrobial drugs. Some of the enzymes within the folate pathway can occur as bi- or trifunctional complexes in bacteria and parasites, but the way in which bifunctional DHNA-HPPK enzymes are assembled is unclear. Here, we report the determination of the structure at 2.9 A resolution of the DHNA-HPPK (SulD) bifunctional enzyme complex from the respiratory pathogen Streptococcus pneumoniae. In the crystal, DHNA is assembled as a core octamer, with 422 point group symmetry, although the enzyme is active as a tetramer in solution. Individual HPPK monomers are arranged at the ends of the DHNA octamer, making relatively few contacts with the DHNA domain, but more extensive interactions with adjacent HPPK domains. As a result, the structure forms an elongated cylinder, with the HPPK domains forming two tetramers at each end. The active sites of both enzymes face outward, and there is no clear channel between them that could be used for channelling substrates. The HPPK-HPPK interface accounts for about one-third of the total area between adjacent monomers in SulD, and has levels of surface complementarity comparable to that of the DHNA-DHNA interfaces. There is no "linker" polypeptide between DHNA and HPPK, reducing the conformational flexibility of the HPPK domain relative to the DHNA domain. The implications for the organisation of bi- and trifunctional enzyme complexes within the folate biosynthesis pathway are discussed.  相似文献   

13.
In Saccharomyces cerevisiae and other fungi, the enzymes dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) are encoded by a polycistronic gene that is translated into a single polypeptide having all three functions. These enzymatic functions are essential to both prokaryotes and lower eukaryotes, and catalyse sequential reactions in folate biosynthesis. Deletion or disruption of either function leads to cell death. These enzymes are absent from mammals and thus make ideal antimicrobial targets. DHPS is currently the target of antifolate therapy for a number of infectious diseases, and its activity is inhibited by sulfonamides and sulfones. These drugs are typically used as part of a synergistic cocktail with the 2,4-diaminopyrimidines that inhibit dihydrofolate reductase. A gene encoding the S.cerevisiae HPPK and DHPS enzymes has been cloned and expressed in Escherichia coli. A complex of the purified bifunctional polypeptide with a pterin monophosphate substrate analogue has been crystallized, and its structure solved by molecular replacement and refined to 2.3A resolution. The polypeptide consists of two structural domains, each of which closely resembles its respective monofunctional bacterial HPPK and DHPS counterpart. The mode of ligand binding is similar to that observed in the bacterial enzymes. The association between the domains within the polypeptide as well as the quaternary association of the polypeptide via its constituent DHPS domains provide insight into the assembly of the trifunctional enzyme in S.cerevisiae and probably other fungal species.  相似文献   

14.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is an essential enzyme in the microbial folate biosynthetic pathway. This pathway has proven to be an excellent target for antimicrobial development, but widespread resistance to common therapeutics including the sulfa drugs has stimulated interest in HPPK as an alternative target in the pathway. A screen of a pterin-biased compound set identified several HPPK inhibitors that contain an aryl substituted 8-thioguanine scaffold, and structural analyses showed that these compounds engage the HPPK pterin-binding pocket and an induced cryptic pocket. A preliminary structure activity relationship profile was developed from biophysical and biochemical characterizations of derivative molecules. Also, a similarity search identified additional scaffolds that bind more tightly within the HPPK pterin pocket. These inhibitory scaffolds have the potential for rapid elaboration into novel lead antimicrobial agents.  相似文献   

15.
16.
BACKGROUND: Folate cofactors are essential for life. Mammals derive folates from their diet, whereas most microorganisms must synthesize folates de novo. Enzymes of the folate pathway therefore provide ideal targets for the development of antimicrobial agents. 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. RESULTS: The crystal structure of HPPK from Escherichia coli has been determined at 1.5 A resolution with a crystallographic R factor of 0.182. The HPPK molecule has a novel three-layered alpha beta alpha fold that creates a valley approximately 26 A long, 10 A wide and 10 A deep. The active center of HPPK is located in the valley and the substrate-binding sites have been identified with the aid of NMR spectroscopy. The HP-binding site is located at one end of the valley, near Asn55, and is sandwiched between two aromatic sidechains. The ATP-binding site is located at the other end of the valley. The adenine base of ATP is positioned near Leu111 and the ribose and the triphosphate extend across and reach the vicinity of HP. CONCLUSIONS: The HPPK structure provides a framework to elucidate structure/function relationships of the enzyme and to analyze mechanisms of pyrophosphoryl transfer. Furthermore, this work may prove useful in the structure-based design of new antimicrobial agents.  相似文献   

17.
M Sheridan  D C Wilton 《FEBS letters》1992,314(3):486-488
The less polar fluorescent analogue of ATP, 2'(3')-trinitrophenyl-5'-triphosphate bound to rat liver fatty acid-binding protein with high affinity (Kd 6.3 x 10(-6) M) and 1:1 molar stoichiometry. This probe bound to the fatty acid binding site of the protein and was displaced by oleic acid and oleoyl CoA. High concentrations of ATP did not cause significant displacement of the fluorescent ATP analogue. Since the anionic part of this molecule is the triphosphate group it is difficult to envisage this group being accommodated at an anion binding site within the non-polar core of this protein as is the case with other fatty acid binding proteins. Therefore it is anticipated that the ligand must bind to liver fatty acid-binding protein with this triphosphate group surface exposed. Caution must be exercised when using the more hydrophobic fluorescent analogue of ATP to investigate the ATP binding properties of proteins.  相似文献   

18.
In pea leaves, the synthesis of 7,8-dihydropteroate, a primary step in folate synthesis, was only detected in mitochondria. This reaction is catalyzed by a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase enzyme, which represented 0.04-0.06% of the matrix proteins. The enzyme had a native mol. wt of 280-300 kDa and was made up of identical subunits of 53 kDa. The reaction catalyzed by the 7,8-dihydropteroate synthase domain of the protein was Mg2+-dependent and behaved like a random bireactant system. The related cDNA contained an open reading frame of 1545 bp and the deduced amino acid sequence corresponded to a polypeptide of 515 residues with a calculated M(r) of 56,454 Da. Comparison of the deduced amino acid sequence with the N-terminal sequence of the purified protein indicated that the plant enzyme is synthesized with a putative mitochondrial transit peptide of 28 amino acids. The calculated M(r) of the mature protein was 53,450 Da. Southern blot experiments suggested that a single-copy gene codes for the enzyme. This result, together with the facts that the protein is synthesized with a mitochondrial transit peptide and that the activity was only detected in mitochondria, strongly supports the view that mitochondria is the major (unique?) site of 7,8-dihydropteroate synthesis in higher plant cells.  相似文献   

19.
An enzyme that catalyzes the formation of 6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydropterin triphosphate (D-erythrodihydroneopterin triphosphate) and formic acid from GTP has been purified about 3700-fold from homogenates of chicken liver. The molecular weight of the enzyme, D-erythrodihydroneopterin triphosphate synthetase (GTP cyclohydrolase), has been estimated to be 125,000 by gel filtration on Ultrogel AcA-34. The enzyme functions optimally between pH 8.0 and 9.2 and is considerably heat-stable. No cofactors or metal ions have been demonstrated to be required for activity; however, the reaction is strongly inhibited by Cu2+ and Hg2+. GTP is the most efficient substrate, with GDP being 1/17 as active and guanosine, GMP, and ATP being inactive. The Km for GTP has been found to be 14 micrometer. Although the overall reaction catalyzed by D-erythrodihydroneopterin triphosphate synthetase from chicken liver is identical with that from Escherichia coli GTP cyclohydrolase, immunological studies show no apparent homology between the two enzymes.  相似文献   

20.
1. From NMR, IR and visible absorption studies of 2'(or 3')-O-(2, 4, 6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP), 2'(or 3')-O-(2, 4, 6-trinitrophenyl) adenosine (TNP-Ad(, and 1-(2'-hydroxyethoxy)-2, 4, 6-trinitrobenzene (TNP-EG), it was concluded that there is an intramolecular interaction between the base and 2, 4, 6-trinitrophenyl (TNP) moieties in the TNP-ATP molecule. 2. A broad new absorption band was observed in the 530-630 nm region when excess indole was added to reaction mixtures containing TNP-ATP dissolved in 50% methanol or dimethyl sulfoxide. On addition of aromatic amino acid derivatives, methanol or dimethyl sulfoxide. On addition of aromatic amino acid derivatives, TNP-ATP and TNP-Ad underwent spectral shifts in the 400-550 nm region. The formation of a 1:1 complex apparently occurred between TNP-ATP and aromatic amino acid derivatives, and the complex with N-acetyltryptophan was stable in 50% methanol. The difference spectrum of TNP-EG vs. TNP-ATP closely resembled that induced by the addition of N-acetyltryptophan to the TNP-ATP solution. 3. The binding of 2'(or 3')-O-(2, 4, 6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) to heavy meromyosin (HMM) was studied by the rapid gel equilibrium method using Sephadex G-25. A dissociation constant of 1.4 muM and a maximum binding number of 1.8 were obtained in 0.15 M KCl, 10 mM MgCl2, and 50 mM Tris-HCl (pH 8.0) at 25 degrees. TNP-ADP bound to the enzyme caused a characteristic spectral shift in the visible region. This spectral shift was explained in terms of an interaction between tryptophanyl residues and the adenine base of TNP-ADP bound to the enzyme. TNP-ADP quenched the tryptophanyl fluorescence, but TNP-EG and TNP-Ad did not. In the presence of 6 M guanidine hydrochloride, TNP-ADP scarcely quenched the tryptophanyl fluorescence, its effect being comparable to that of TNP-Ad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号