首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Khan TK  Chong PL 《Biophysical journal》2000,78(3):1390-1399
Membrane packing and dynamics of bipolar tetraether liposomes composed of the polar lipid fraction E (PLFE) from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius have been studied by perylene fluorescence. At a probe-to-PLFE lipid ratio of 1:400, we have detected an unusual fluorescence intensity increase with increasing temperature, while the fluorescence lifetime changed little. As the ratio was decreased, the intensity anomaly was diminished. At 1:3200 and 1:6400, the anomaly disappeared. A remarkable perylene intensity anomaly was also observed in bilayers composed of saturated monopolar diester phosphatidylcholines at their main phase transition temperatures. These results suggest that the intensity anomaly may be due to probe aggregation caused by tight membrane packing. At the same probe-to-lipid ratio (1:400), however, 1, 2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and 1, 2-diphytanoyl-sn-glycero-3-phosphoglycerol (DPhPG) liposomes did not exhibit any intensity anomaly with increasing temperature. This suggests that DPhPC and DPhPG liposomes are more loosely packed than PLFE liposomes; thus the branched methyl groups are not the contributing factor of the tight membrane packing found in PLFE liposomes. Using a multiexcitation method, we have also determined the average (R), in-plane (R(ip)), and out-of-plane (R(op)) rotational rates of perylene in PLFE liposomes at various temperatures (20-65 degrees C). R and R(ip), determined at two different probe-to-lipid ratios (1:400 and 1:3200), both undergo an abrupt increase when the temperature is elevated to approximately 48 degrees C. These data suggest that PLFE liposomes are rigid and tightly packed at low temperatures, but they begin to possess appreciable "membrane fluidity" at temperatures close to the minimum growth temperature ( approximately 50 degrees C) of thermoacidophilic archaebacteria.  相似文献   

2.
The interaction between 3-acyl-2-(6-doxylpalmitoyl) phosphatidyl choline used as a hydrophobic spin probe and Ca2+-dependent ATPase from sarcoplasmic reticulum membranes of rabbit and carp white skeletal muscles was studied. The spin label incorporation into ATPase preparations was performed at initial steps of ATPase isolation by incubating reticulum membranes with the spin probe in the presence of cholic acid. A comparison of the molecular mobility of the probe incorporated into ATPase preparations and into liposomes formed from ATPase phospholipids demonstrated that the presence of the protein in the membrane produces the same effect on the probe mobility as does the decrease of temperature by 10-15 degrees C. The molecular mobility of the probe in the ATPase preparation is increased during protein thermal denaturation. The breaks on the Arrhenius plots for the probe molecular mobility are revealed at the same temperatures (25 degrees for rabbit reticulum and 16 degrees for carp reticulum) as those for the ATPase activity.  相似文献   

3.
Activation of the first component of human complement (C1) by bilayer-embedded nitroxide spin label lipid haptens and specific rabbit antinitroxide antibody has been measured. The nitroxide spin label hapten was contained in host bilayers of either dimyristoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine in the form of both liposomes and vesicles. At a temperature of 32 degrees C, which is intermediate between the hydrocarbon chain-melting temperatures of the two phospholipids, activation of C1 in such vesicles and liposomes is more efficient in the fluid membrane. Studies of C1 activation in binary mixtures of cholesterol and dipalmitoyl phosphatidylcholine indicate that the activation of C1 is not limited by the lateral diffusion of the lipid haptens in these membranes.  相似文献   

4.
The molar ratio of cholesterol to phospholipid (C/P) in human erythrocyte membrane is modified by incubating the cells with liposomes of various C/P ratios. The observed increase in cell surface area may be accounted for by the addition of cholesterol molecules. Fusion between liposomes and cells or attachment of liposomes to cells is not a significant factor in the alteration of C/P ratio. Onset temperatures for lipid phase separation in modified membranes are measured by electron diffraction. The onset temperature increases with decreasing C/P ration from 2 degrees C at C/P = 0.95 to 20 degrees C at C/P = 0.5. Redistribution of intramembrane particles is observed in membranes freeze-quenched from temperatures below the onset temperature. The heterogeneous distribution of intramembrane particles below the onset temperature suggests phase separation of lipid, with concomitant segregation of intramembrane protein into domains, even in the presence of an intact spectrin network.  相似文献   

5.
Membranes of thermophilic Archaea are composed of unique tetraether lipids in which C40, saturated, methyl-branched biphytanyl chains are linked at both ends to polar groups. In this paper, membranes composed of bipolar lipids P2 extracted from the acidothermophile archaeon Sulfolobus solfataricus are studied. The biophysical basis for the membrane formation and thermal stability is investigated by using electron spin resonance (ESR) of spin-labeled lipids. Spectral anisotropy and isotropic hyperfine couplings are used to determine the chain flexibility and polarity gradients, respectively. For comparison, similar measurements have been carried out on aqueous dispersions of diacyl reference lipid dipalmitoyl phosphatidylcholine and also of diphytanoyl phosphatidylcholine, which has methyl-branched chains. At a given temperature, the bolaform lipid chains are more ordered and less flexible than in normal bilayer membranes. Only at elevated temperatures (80 degrees C) does the flexibility of the chain environment in tetraether lipid assemblies approach that of fluid bilayer membranes. The height of the hydrophobic barrier formed by a monolayer of archaebacterial lipids is similar to that in conventional fluid bilayer membranes, and the permeability barrier width is comparable to that formed by a bilayer of C16 lipid chains. At a mole ratio of 1:2, the tetraether P2 lipids mix well with dipalmitoyl phosphatidylcholine lipids and stabilize conventional bilayer membranes. The biological as well as the biotechnological relevance of the results is discussed.  相似文献   

6.
Microviscosity parameters and protein mobility in biological membranes.   总被引:33,自引:0,他引:33  
A fluorescence polarization technique with 1,6-diphenyl 1,3,5-hexatriene as a probe were employed to determine the microviscosity, n, in liposomes and biological membranes of different cholesterol to phospholipid mol ratio. From the temperature profile of n the flow activation energy, deltaE, and the unit flow volume, V, were derived. The increase of cholesterol/phospholipid ratio in liposomes is followed by a marked increase in n and a decrease in both deltaE and V. Liposomes of the same phospholipid composition as human erythrocyte membranes display in the extreme cases of cholesterol/phospholipid ratios 0 and 1.4 the values of n(25 degrees C) = 1.8 and 9.1 P, and deltaE = 15.0 and 6.5 kcal/mol, respectively. For most membranes studied the fluorescence polarization characteristics and the corresponding n values are similar to those obtained with these liposomes when the cholesterol/phospholipid level of the liposomes and the membranes were the same. However, unlike in liposomes deltaE of all membranes is in the narrow range of 6.5-8.5 kcal/mol, regardless of its cholesterol/phospholipid level. It is plausible that this is a general characteristic of biological membranes which originates from the vertical movement of membrane proteins to an equilibrium position which maintains constant deltaE and V values. This type of movement should affect the interrelation between lipid fluidity and protein mobility. Lipid microviscosity and the degree of rotational mobility of concanavalin A receptor sites in cell membranes were therefore determined. The examined cells were normal and malignant fibroblasts, as an example of cells that form solid tumours in vivo, and normal and malignant lymphocytes, as an example of cells that form ascites tumours in vivo. In both cell systems, opposite correlations between the lipid fluidity and the mobility of concanavalin A receptors were observed. In the fibroblasts the malignant cells possess a lower lipid fluidity but a higher receptor mobility, whereas in the lymphocytes the malignant cells possess a higher lipid fluidity but a lower receptor mobility. Thus, in these cell systems the degree of rotational mobility of concanavalin A receptors increases upon decreasing the lipid fluidity and decreases upon increasing the fluidity of the lipid core. This dynamic feature is in line with the above proposal according to which the concanavalin A receptor sites become more exposed to the aqueous surrounding upon increasing the microviscosity of the lipid layer and vice versa.  相似文献   

7.
Using spin-labeled fatty acid derivatives and maleimide, the effect of temperature on the structural state of various parts of the lipid bilayer of sarcoplasmic reticulum (SR) membranes and the segmental motion of the Ca-ATPase molecule were investigated. The mobility of the spin probes localized in the hydrophobic zone and the outer part of the SR membrane was shown to increase with a rise in temperature from 4 to 44 degrees C, the temperature of 20 degrees C being critical for these changes. In the presence of ATP, critical changes in the spin probe mobility occur at lower temperatures, while in the presence of ATP and Ca2+ they are observed at 20 degrees C for a spin probe localized in the outer part of the SR membrane. The mobility of a spin probe localized in the hydrophobic part of the membrane increases linearly with a rise in temperature. In the absence of ligands, the segmental motion of Ca-ATPase changes linearly within a temperature range of 10-30 degrees C. However, when ATP alone or ATP and Ca2+ are simultaneously added to the incubation mixture, the protein mobility undergoes critical changes at 20 degrees C. The Arrhenius plots for ATPase activity and Ca2+ uptake rate in SR membrane preparations also have a break at 20 degrees C. It is assumed that changes in the structural state of membrane lipids produce conformational changes in the Ca-ATPase molecule; the enzyme seems to be unsensitive to the structural state of the membrane lipid matrix in the absence of the ligands.  相似文献   

8.
A method was devised which increases the cholesterol concentration of rat liver plasma membranes by exchange from cholesterol-rich liposomes at low temperature (4 degrees C). When the cholesterol concentration of liver plasma membranes is increased, there is an increase in lipid order as detected by a decrease in mobility of an incorporated fatty acid spin probe. This is accompanied by an inhibition of adenylate cyclase activity. The various ligand-stimulated adenylate cyclase activities exhibit different sensitivities to inhibition by cholesterol, with inhibition of glucagon-stimulated greater than fluoride-stimulated greater than basal activity. The bilayer-fluidizing agent benzyl alcohol is able to reverse the inhibitory effect of cholesterol on adenylate cyclase activity in full. The thermostability of fluoride-stimulated cyclase is increased in the cholesterol-rich membranes. Elevated cholesterol concentrations abolish the lipid-phase separation occurring at 28 degrees C in native membranes as detected by an incorporated fatty acid spin probe. This causes Arrhenius plots of glucagon-stimulated adenylate cyclase activity to become linear, rather than exhibiting a break at 28 degrees C. It is suggested that the cholesterol contents of both halves of the bilayer are increased by the method used and that inhibition of adenylate cyclase ensues, owing to the increase in lipid order and promotion of protein-protein and specific cholesterol-phospholipid interactions.  相似文献   

9.
The effect of lipid composition of liposomes on peroxidation induced by ferrous ion and ascorbate was examined. Temperature affects the sensitivity of liposomes; the peroxidation rate was increased with increase of the incubation temperature. With liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine (substrate) and a peroxidation-insensitive lipid, 1-palmitoyl-2-oleoyl phosphatidylcholine, peroxidation was dependent on the density of the substrate. No appreciable peroxidation was observed with liposomes containing less than 10 mol% of the substrate at 37 degrees C. When 1 mol substrate was mixed with 9 mol dimyristoyl phosphatidylcholine, peroxidation occurred below 10 degrees C, but not above 20 degrees C. Above 20 degrees C, the substrates should be located homogeneously on the membranes, whereas they should be clustered below 10 degrees C, since the gel-liquid crystalline phase transition temperature of matrix membrane of dimyristoylphosphatidylcholine was 17-21 degrees C. Peroxidation of liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine was also suppressed by cholesterol. These findings indicate that the lateral distribution as well as the density of the substrate on membranes affects the sensitivity of the substrate to peroxidation. It was also found that alpha-tocopherol is preferentially located in the 1-palmitoyl-2-arachidonyl phosphatidylcholine-rich regions of membranes consisting of mixed phospholipids, and efficiently suppresses peroxidation of liposomal lipids.  相似文献   

10.
A diverse and complex array of lipids plays a vital role in structuring and organizing cell membranes. However, the details of lipid requirements for global membrane organization are poorly understood. One obstacle to this understanding is the difficulty of accurately manipulating the lipid composition of commonly studied mammalian cells. In contrast, the lipid composition of cells of ectotherms changes with changes in environmental temperatures. Thus, comparison of lipid probe diffusion in cells from animals living at different temperatures, together with biochemical analysis, can be used toward understanding membrane organization. We used two dialkyindocarbocyanine iodide (DiI) probes, of differing chain length, to probe lipid organization in terms of their lateral diffusion in eggs of the sea urchin Strongylocentrotus purpuratus. The lateral diffusion of our probes changed in urchins developing in the year of an "El Ni?o" weather event, which raised the ocean temperature by several degrees, suggesting alterations in membrane domain composition and structure. Indeed the changes in lateral diffusion were correlated with lower levels of unsaturated fatty acids and cholesterol in animals of the "El Ni?o" year than in animals of the preceding or following years. We found similar trends comparing DiI diffusion in membranes of eggs from 15 degrees C waters with those from 10 degrees C. Our findings establish a new approach for manipulating and studying membrane organization.  相似文献   

11.
Peculiarities of structural changes in erythrocyte membranes during freezing (from -20 degrees to -50 degrees) were studied by electron paramagnetic resonance method using spin-labelled derivative of stearic acid-5-doxylstearate. It was established that membranes underwent a number of structural reconstructions due to the temperature decrease and water freezing-out. Differences were found in temperature dependences that characterize lipid ordering during probe insertion into membranes of native erythrocytes, white ghosts, and liposomes from total lipids of erythrocyte membranes. The data obtained indicate the impairment in the structure of lipid components and lipid-protein interactions in erythrocyte membranes during cooling.  相似文献   

12.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Zeron Y  Tomczak M  Crowe J  Arav A 《Cryobiology》2002,45(2):143-152
We have examined the effects of combinations between egg-phosphatidylcholine (EPC) or dipalmitoylphosphatidylcholine (DPPC) liposomes with either bovine spermatozoa or oocytes on cellular chilling sensitivity, lipid phase transition temperature (T(m)), and the ability of the oocytes to develop to the blastocyst stage. Spermatozoa and oocytes were exposed to EPC and DPPC liposomes at various temperatures (spermatozoa: 4, 12, 16, and 25 degrees C; oocytes: 4, 16, and 32 degrees C). The membrane integrity of the spermatozoa-control group decreased significantly following exposure to 16 or 12 degrees C, compared to ambient temperature (25 degrees C). In contrast, the EPC-sperm group had a greater resistance to chilling at each temperature and showed a decline in membrane integrity only at the lowest temperatures investigated. However, the DPPC-sperm group was injured significantly at all temperatures tested. Similar to the sperm, oocytes from the control group that were exposed to 16 degrees C were injured more severely than oocytes that were electrofused with EPC or DPPC liposomes. The membrane integrity of the oocytes at 16 degrees C that were electrofused with either EPC or DPPC liposomes was approximately the same as the control group held at 32 degrees C (normalized to 100%), compared to 46% in the control group at 16 degrees C (P<0.01). The transition temperatures of the sperm and oocyte membranes revealed different T(m) for the different liposome treatments. All groups had a significantly higher cleavage rate, as well as increased blastocyst formation when oocytes were exposed to temperatures above or below their T(m). We suggest that the T(m) of spermatozoa or oocytes can be changed by spontaneous association or electrofusion of liposomes with cellular membranes and, consequently, the chilling sensitivity can be altered. The resulting possibility is that embryo development after cryopreservation could be improved with such a method.  相似文献   

14.
Intramolecular excimer formation of 1,3-di(2-pyrenyl)propane was used to study the fluidity of liposomes prepared from membrane polar lipids of Bacillus stearothermophilus. On the basis of spectral data, local polarity and polarizability parameters were established suggesting that the probe molecules are located well inside the membranes, but displaced towards the polar head groups of the phospholipid molecules. The excimerization rate is very sensitive to lipid phase transitions and pretransitions of synthetic pure lipid bilayers. In bacterial lipids from cultures grown at 55 and 68 degrees C, thermal profiles of excimer to monomer intensity ratios (I'/I) show a broad transition which is displaced to higher temperatures in response to the increase of the growth temperature; these results correlate well with differential scanning calorimetry data and fluorescence polarization of diphenylhexatriene. Additionally, lipid bilayers of bacteria grown at 68 degrees C exhibit a decreased membrane fluidity, as monitored by both fluorescent probes.  相似文献   

15.
The effects of bovine alpha-lactalbumin on the thermotropic properties of dimyristoylphosphatidylcholine liposomes are studied by Raman spectroscopy, fluorescence polarization and differential scanning calorimetry. The Raman spectrum reveals the drastic effects of the protein on the phospholipid structure. The transition temperature shifts downwards and the inter- and intrachain order in the lipid matrix progressively diminish with increasing protein concentration. Up to a lipid to protein molar ratio R = 25, the bilayer structure however is maintained. From fluorescence polarization data we conclude that the protein restricts the mobility of the DPH probe. In view of the Raman results, the lower probe mobility obviously cannot be associated with a more rigid lipid matrix. Nevertheless the transition temperatures of the alpha-lactalbumin-phospholipid complex increases. DSC measurements give no decisive way out for this discrepancy. These results confirm that different types of lipid order are involved in lipid-protein interactions. Compared to the free protein, the alpha-helicity of the protein has increased in the complex.  相似文献   

16.
B F Dickens  G A Thompson 《Biochemistry》1980,19(22):5029-5037
Fluorescence measurements of the probe 1,6-diphenyl-1,3,5-hexatriene in native Tetrahymena pyriformis microsomal membranes revealed characteristic "break points" in curves of polarization vs. temperature. In the 5--35 degree C range, membranes from cells grown at 39 degrees C exhibited two break points, one at 11.6 +/- 0.6 degrees C and another at 23.1 +/- 1.6 degrees C. Membranes from 15 degrees C grown cells also showed two break points, one at 8.0 +/- 1.7 degrees C and another at 17.7 +/- 1.7 degrees C. Complementary measurements of turbidity (absorbance at 360 nm) vs. temperature revealed break points at approximately the same temperatures as observed with the fluorescent probe, thus strengthening the likelihood that the break points signify the onset or termination of lipid phase separations or some other significant structural alteration of lipids. In general, break points measured in the native membrane samples occurred at slightly lower temperatures than did break points in lipids extracted from comparable membranes. This suggests two possible types of protein--lipid interaction. First, there may be a selective withdrawal of relatively highly saturated phospholipid molecular species from the bulk lipid phase and into protein annulus regions. Alternatively, the configuration of the hydrophobic core of certain key membrane proteins may be such that nonspecific interactions with the lipids stabilize the liquid-crystalline phase.  相似文献   

17.
Cultured chick fibroblasts supplemented with stearic acid in the absence of serum at 37 degrees C degenerate and die in contrast to cells grown at 41 degrees C which appear normal in comparison with controls. These degenerative effects at 37 degrees C are alleviated by addition to stearate-containing media of fatty acids known to fluidize bilayers. These observations suggest that cell degeneration at 37 degrees C may involve alterations in the physical state of the membrane. Fatty acid analysis of plasma membrane obtained from stearate-supplemented cells clearly demonstrates the enrichment of this fatty acid species into bilayer phospholipids. Moreover, the extent of enrichment is similar in cells grown at both 37 and 41 degrees C. Stearate enrichment at either temperature does not appear to alter significantly membrane cholesterol or polar lipid content. Fluorescence anisotropy measurements for perylene and diphenylhexatriene incorporated into stearate-enriched membranes reveals changes suggestive of decreased bilayer fluidity. Moreover, analysis of temperature dependence of probe anisotropy indicates that a similarity in bilayer fluidity exists between stearate-enriched membranes at 41 degrees C and control membranes at 37 degrees C. Calorimetric data from liposomes prepared from polar lipids isolated from these membranes show similar melting profiles, consistent with the above lipid and fluorescence analyses. Arrhenius plot of stearate-enriched membrane glucose transporter function reveals breaks which coincide with the main endotherm of the pure phospholipid phase transition, indicating the sensitivity of the transporter to this transition which is undetectable in these native bilayers. These data suggest the existence of regions of bilayer lipid microheterogeneity which affect integral enzyme function, cell homeostasis and viability.  相似文献   

18.
Electron spin resonance (ESR) studies were conducted on human platelet plasma membranes using 5-nitroxide stearate, I(12,3). The polarity-corrected order parameter S and polarity-uncorrected order parameters S(T parallel) and S(T perpendicular) were independent of probe concentration at low I(12.3)/membrane protein ratios. At higher ratios, S and S(T perpendicular) decreased with increasing probe concentration while S(T parallel) remained unchanged. This is the result of enhanced radical interactions due to probe clustering. A lipid phase separation occurs in platelet membranes that segregates I(12,3) for temperatures less than 37 degrees C. As Arrhenius plots of platelet acid phosphatase activity exhibit a break at 35 to 36 degrees C, this enzyme activity may be influenced by the above phase separation. Similar experiments were performed on native [cholesterol/phospholipid ratio (C/P) = 0.71] and cholesterol-enriched [C/P = 0.85] rat liver plasma membranes. At 36 degrees C, cholesterol loading reduces I(12,3) flexibility and decreases the probe ratio at which radical interactions are apparent. The latter effects are attributed to the formation of cholesterol-rich lipid domains, and to the inability of I(12,3) to partition into these domains because of steric hinderance. Cholesterol enrichment increases both the high temperature onset of the phase separation occurring in liver membranes from 28 degrees to 37 degrees C and the percentage of probe-excluding, cholesterol-rich lipid domains at elevated temperatures. A model is discussed attributing the lipid phase separation in native liver plasma membranes to cholesterol-rich and -poor domains. As I(12,3) behaves similarly in cholesterol-enriched liver and human platelet plasma membranes, cholesterol-rich and -poor domains probably exist in both systems at physiologic temperatures.  相似文献   

19.
The vibrational Raman spectra of both pure 1-alpha-dimyristoylphosphatidic acid (DMPA) liposomes and DMPA multilayers reconstituted with ferricytochrome c at pH 7 and pH 4, with either sodium or calcium as the cation, are reported as a function of temperature. Multilayers composed of a 1:1 mol ratio DMPA and dimyristoylphosphatidylcholine with perdeuterated acyl chains (DMPC-d54) have also been reconstituted with approximately 10(-4) M ferricytochrome c for Raman spectroscopic observation. Total integrated band intensities and relative peak height intensity ratios, two spectral Raman scattering parameters used to characterize bilayer properties, are sensitive to the presence of both ferricytochrome c and the cation in the reconstituted liposomes. Temperature profiles, derived from the various Raman intensity parameters for the 3,100-2,800 cm-1 lipid acyl chain C-H stretching mode region specifically reflect bilayer perturbations due to the interactions of ferricytochrome c. At pH 4 the calcium DMPA multilamellar gel to liquid crystalline phase transition temperatures Tm, defined by either the C-H stretching mode I2850/I2880 and I2935/I2880 peak height intensity ratios, are 58.5 +/- 0.5 degrees C and 60.0 +/- 0.3 degrees C, respectively. This difference in Tm's resolves the phase transition process into first an expansion of the lipid lattice and then a melting of the lipid acyl chains. At pH 7 the calcium DMPA liposomes show no distinct phase transition characteristics below 75 degrees C. For sodium DMPA liposomes reconstituted with ferricytochrome c at either pH 4.0 or pH 7.0, spontaneous Raman spectra show altered lipid structures at temperatures above 40 degrees C. Resonance Raman spectra indicate that ferricytochrome c reconstituted in either calcium or sodium DMPA liposomes changes irreversibly above Tm. For either the binary lipid or ternary lipid-protein systems reconstituted with DMPC-d54, linewidth parameters of the DMPC-d54 acyl chain CD2 symmetric stretching modes at 2,103 cm-1 provide a sensitive measure of the conformational and dynamic properties of the perdeuterated lipid component, while the 3,000 cm-1 C-H spectral region reflects the bilayer characteristics of the DMPA species in the complex. Although calcium clearly induces a lateral phase separation in the DMPA/DMPC-d54 system at pH 7.5 (Kouaouci, R., J.R. Silvius, I. Grah, and M. Pezolet. 1985. Biochemistry. 24:7132-7140), no distinct lateral segregation of the lipid components is observed in the mixed DMPA/DMPC-d54 lipid system in the presence of either ferricytochrome c or the sodium and calcium cations at pH 4.0.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
W L Vaz  R H Austin    H Vogel 《Biophysical journal》1979,26(3):415-426
A derivative of the integral membranes protein, cytochrome b5, has been prepared in which the native heme group has been replaced by the structurally similar rhodium(III)-protoporphyrin IX. This metalloporphyrin has a finite triplet yield with a single exponential decay time of 22 microsecond in water. After insertion of the metalloporphyrin into the protein, its triplet-state decay becomes strongly nonexponential with at least three equal amplitude components with time constants varying over a range of 100. The derivatized protein has been incorporated into unilamellar liposomes prepared from dimyristoyllecithin, and the rotational diffusion of the protein in the lipid bilayer has been studied at temperatures above and below the lipid phase transition temperature via triplet absorbance anisotropy decay. The anisotropy decay curves are biphasic both above and below the lipid phase transition. The rotational diffusion constant is found to be 2.4 X 10(5) s-1 at 35 degrees C, and 1.1 X 10(4) s-1 at 10 degrees C, both being calculated from the fast decay component. The ratio of the limiting anisotropy to the initial anisotropy is 0.6 at both temperatures. This implies a cone of restricted motion of 34 degrees for the protein in the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号