首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a simple and efficient method for creation of novel protein functions in an existing protein scaffold. The in vitro coevolution method involves design of a hypothetical pathway for the target function followed by stepwise directed evolution of the corresponding protein along the pathway. As a test case, this strategy was used to engineer variants of human estrogen receptor alpha ligand-binding domain (hERalphaLBD) with novel corticosterone activity. Two steroids, testosterone and progesterone, that provide a progressive structural bridge between 17beta-estradiol and corticosterone, were chosen to assist the directed evolution of hERalphaLBD. A total of approximately 10(6) variants were screened in four rounds of random mutagenesis, resulting in two hERalphaLBD variants that respond to corticosterone. Creation of this new ligand activity required the presence of four simultaneous mutations. In addition, several required mutations were located outside the ligand binding pocket and yet exerted important action on ligand binding. Our results demonstrate the ability of in vitro coevolution to create novel protein function that is difficult or impossible to achieve by existing protein engineering approaches and also shed light on the natural evolution of nuclear hormone receptors. This in vitro coevolution approach should provide a powerful, broadly applicable tool for engineering biological molecules and systems with novel functions.  相似文献   

2.
定向进化是一个循环过程,在构建多样化基因序列和筛选功能基因变体之间交替进行.该技术目前已被广泛应用于DNA序列、基因功能和蛋白质结构的优化和分析.定向进化包括随机基因文库的生成、基因在合适宿主中的表达和突变文库的筛选.构建基因文库的关键是库容量和突变多样性,而筛选变体的关键是高灵敏度和高通量.文中讨论了定向进化技术的最...  相似文献   

3.
Improving catalytic function by ProSAR-driven enzyme evolution   总被引:2,自引:0,他引:2  
We describe a directed evolution approach that should find broad application in generating enzymes that meet predefined process-design criteria. It augments recombination-based directed evolution by incorporating a strategy for statistical analysis of protein sequence activity relationships (ProSAR). This combination facilitates mutation-oriented enzyme optimization by permitting the capture of additional information contained in the sequence-activity data. The method thus enables identification of beneficial mutations even in variants with reduced function. We use this hybrid approach to evolve a bacterial halohydrin dehalogenase that improves the volumetric productivity of a cyanation process approximately 4,000-fold. This improvement was required to meet the practical design criteria for a commercially relevant biocatalytic process involved in the synthesis of a cholesterol-lowering drug, atorvastatin (Lipitor), and was obtained by variants that had at least 35 mutations.  相似文献   

4.
Directed evolution is a new process for developing industrially viable biocatalysts. This technique does not require a comprehensive knowledge of the relationships between sequence structure and function of proteins as required by protein engineering. It mimics the process of Darwinian evolution in a test tube combining random mutagenesis and recombination with screening or selection for enzyme variants that have the desired properties. Directed evolution helps in enhancing the enzyme performance both in natural and synthetic environments. This article reviews the process of directed evolution and its application to improve substrate specificity, activity, enantioselectivity and thermal stability.  相似文献   

5.
体外分子定向进化研究进展   总被引:17,自引:2,他引:17  
体外定向进化作为近几年发展起来的一种蛋白质改造新策略,可以在未知目标蛋白三维结构信息和作用机制的情况下,通过对编码基因的随机突变、重组和定向筛选,获得具有改进功能或全新功能的蛋白质,使几百万年的自然进化过程在短期内得以实现,因而是发现新的生物活性分子和反应途径的重要方法,已在短短几年内取得了令人瞩目的成就.  相似文献   

6.
研究不同耐药细菌AcrAB-Tolc型外排泵中关键蛋白AcrA的序列,针对其保守及非保守氨基酸残基进行该类蛋白的进化分析,构建蛋白进化树。收集来源于不同细菌的已知序列的AcrA蛋白,去除冗余并进行序列比对之后,根据其序列比对结果的相似性、氨基酸残基的保守性研究其进化特征。结果表明,不同细菌的AcrA蛋白部分氨基酸残基具有高度的保守性,这与其实现生物学功能有关,非保守区域是主要的进化区域。可为不同菌株的进化提供参考,同时为以AcrAB-Tolc型外排泵为靶标的新药研究提供相关数据。  相似文献   

7.
Protein libraries based on natural scaffolds enable the generation of novel molecular tools and potential therapeutics by directed evolution. Here, we report the design and construction of a high complexity library (30 x 10(13) sequences) based on the 10th fibronectin type III domain of human fibronectin (10FnIII). We examined the bacterial expression characteristics and stability of this library using a green fluorescent protein (GFP)-reporter screen, SDS-PAGE analysis, and chemical denaturation, respectively. The high throughput GFP reporter screen demonstrates that a large fraction of our library expresses significant levels of soluble protein in bacteria. However, SDS-PAGE analysis of expression cultures indicates the ratio of soluble to insoluble protein expressed varies greatly for randomly chosen library members. We also tested the stabilities of several representative variants by guanidinium chloride denaturation. All variants tested displayed cooperative unfolding transitions similar to wild-type, and two exhibited free energies of unfolding equal to wild-type 10FnIII. This work demonstrates the utility of GFP-based screening as a tool for analysis of high-complexity protein libraries. Our results indicate that a vast amount of protein sequence space surrounding the 10FnIII scaffold is accessible for the generation of novel functions by directed as well as natural evolution.  相似文献   

8.
The wide variety of protein structures and functions results from the diverse properties of the 20 canonical amino acids. The generally accepted hypothesis is that early protein evolution was associated with enrichment of a primordial alphabet, thereby enabling increased protein catalytic efficiencies and functional diversification. Aromatic amino acids were likely among the last additions to genetic code. The main objective of this study was to test whether enzyme catalysis can occur without the aromatic residues (aromatics) by studying the structure and function of dephospho‐CoA kinase (DPCK) following aromatic residue depletion. We designed two variants of a putative DPCK from Aquifex aeolicus by substituting (a) Tyr, Phe and Trp or (b) all aromatics (including His). Their structural characterization indicates that substituting the aromatics does not markedly alter their secondary structures but does significantly loosen their side chain packing and increase their sizes. Both variants still possess ATPase activity, although with 150–300 times lower efficiency in comparison with the wild‐type phosphotransferase activity. The transfer of the phosphate group to the dephospho‐CoA substrate becomes heavily uncoupled and only the His‐containing variant is still able to perform the phosphotransferase reaction. These data support the hypothesis that proteins in the early stages of life could support catalytic activities, albeit with low efficiencies. An observed significant contraction upon ligand binding is likely important for appropriate organization of the active site. Formation of firm hydrophobic cores, which enable the assembly of stably structured active sites, is suggested to provide a selective advantage for adding the aromatic residues.  相似文献   

9.
改进蛋白质序列空间检索策略是未来蛋白质工程研究的一个关键。本文介绍了一种被称为蛋白质序列-活性相关性(ProSAR)驱动的蛋白质定向进化策略的原理、机器学习算法及应用,为提高蛋白质定向进化效率和解决酶学性质的多维优化问题提供了办法和思路。  相似文献   

10.
Patrick Slama 《Proteins》2018,86(1):3-12
Residues at different positions of a multiple sequence alignment sometimes evolve together, due to a correlated structural or functional stress at these positions. Co‐evolution has thus been evidenced computationally in multiple proteins or protein domains. Here, we wish to study whether an evolutionary stress is exerted on a sequence alignment across protein domains, i.e., on longer sequence separations than within a single protein domain. JmjC‐containing lysine demethylases were chosen for analysis, as a follow‐up to previous studies; these proteins are important multidomain epigenetic regulators. In these proteins, the JmjC domain is responsible for the demethylase activity, and surrounding domains interact with histones, DNA or partner proteins. This family of enzymes was analyzed at the sequence level, in order to determine whether the sequence of JmjC‐domains was affected by the presence of a neighboring JmjN domain or PHD finger in the protein. Multiple positions within JmjC sequences were shown to have their residue distributions significantly altered by the presence of the second domain. Structural considerations confirmed the relevance of the analysis for JmjN‐JmjC proteins, while among PHD‐JmjC proteins, the length of the linker region could be correlated to the residues observed at the most affected positions. The correlation of domain architecture with residue types at certain positions, as well as that of overall architecture with protein function, is discussed. The present results thus evidence the existence of an across‐domain evolutionary stress in JmjC‐containing demethylases, and provide further insights into the overall domain architecture of JmjC domain‐containing proteins.  相似文献   

11.
12.
BGLII is a bacterial endoglucanase that hydrolyzes the β-1,3-glucan present in yeast cell walls, resulting in lysis of Saccharomyces cerevisiae. As a result of this property, BGLII is considered a potential tool for downstream processing and recovery of biotechnological products produced in yeast. Here we describe the improvement of the yeast lytic activity of BGLII, achieved by a directed evolution approach involving random mutagenesis and screening for variants with improved catalytic activity, combined with site-directed mutagenesis. A BGLII variant having three times the wild-type hydrolytic activity on laminarin was identified. The purified enzyme also exhibited higher lytic activity on yeast cells. Mutations causing the improvements are located very close to each other in the amino acid sequence, suggesting that the region should be considered as a target for further improvements of the glucanase activity. These results demonstrate the feasibility of molecular evolution methods for the improvement of the BGLII hydrolytic activity, and open a window for further improvement of this or other properties in glycosyl hydrolases in general.  相似文献   

13.
Circularly permuted fluorescent proteins (FPs) have a growing number of uses in live cell fluorescence biosensing applications. Most notably, they enable the construction of single fluorescent protein‐based biosensors for Ca2+ and other analytes of interest. Circularly permuted FPs are also of great utility in the optimization of fluorescence resonance energy transfer (FRET)‐based biosensors by providing a means for varying the critical dipole–dipole orientation. We have previously reported on our efforts to create circularly permuted variants of a monomeric red FP (RFP) known as mCherry. In our previous work, we had identified six distinct locations within mCherry that tolerated the insertion of a short peptide sequence. Creation of circularly permuted variants with new termini at the locations corresponding to the sites of insertion led to the discovery of three permuted variants that retained no more than 18% of the brightness of mCherry. We now report the extensive directed evolution of the variant with new termini at position 193 of the protein sequence for improved fluorescent brightness. The resulting variant, known as cp193g7, has 61% of the intrinsic brightness of mCherry and was found to be highly tolerant of circular permutation at other locations within the sequence. We have exploited this property to engineer an expanded series of circularly permuted variants with new termini located along the length of the 10th β‐strand of mCherry. These new variants may ultimately prove useful for the creation of single FP‐based Ca2+ biosensors.  相似文献   

14.
Covariation between positions in a multiple sequence alignment may reflect structural, functional, and/or phylogenetic constraints and can be analyzed by a wide variety of methods. We explored several of these methods for their ability to identify covarying positions related to the divergence of a protein family at different hierarchical levels. Specifically, we compared seven methods on a model system composed of three nested sets of G‐protein‐coupled receptors (GPCRs) in which a divergence event occurred. The covariation methods analyzed were based on: χ2 test, mutual information, substitution matrices, and perturbation methods. We first analyzed the dependence of the covariation scores on residue conservation (measured by sequence entropy), and then we analyzed the networking structure of the top pairs. Two methods out of seven—OMES (Observed minus Expected Squared) and ELSC (Explicit Likelihood of Subset Covariation)—favored pairs with intermediate entropy and a networking structure with a central residue involved in several high‐scoring pairs. This networking structure was observed for the three sequence sets. In each case, the central residue corresponded to a residue known to be crucial for the evolution of the GPCR family and the subfamily specificity. These central residues can be viewed as evolutionary hubs, in relation with an epistasis‐based mechanism of functional divergence within a protein family. Proteins 2014; 82:2141–2156. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A newly isolated enantioselective esterase from Pseudomonas fluorescens KCTC 1767, which is currently considered as a biocatalyst for the production of a commercially valuable (S)-ketoprofen, has revealed a low structural and thermal stability. In order to enhance the stability, directed evolution was attempted on this enantioselective esterase by successive steps of an error prone and staggered extension PCR. After the second round of evolution, the best mutant 6–52 with enhanced thermal stability was selected and analyzed. DNA sequence analyses of 6–52 revealed that the three amino acid residues (L120P, I208V, and T249A) were changed and the mutation L120P was presumed as a structurally important residue due to its presence in all positive variants. The purified mutant 6–52, when incubated at 50 and 55 °C for 2 h, remained its activity over 30 and 10%, respectively, whereas there were no detectable activities in wild-type enzyme. The analysis of 6–52 in the presence of 15% ethanol showed 1.8-fold increase in the activity, compared to that of wild-type enzyme. The Km and Vmax values of 6–52 were estimated to be slightly increased, leading to 1.2-fold-higher the catalytic efficacy kcat/Km than that of wild-type enzyme. Additionally, the mutant 6–52 was more resistant to high substrate concentrations than that of wild-type enzyme.  相似文献   

16.
Gene expression and molecular evolution   总被引:32,自引:0,他引:32  
The combination of complete genome sequence information and estimates of mRNA abundances have begun to reveal causes of both silent and protein sequence evolution. Translational selection appears to explain patterns of synonymous codon usage in many prokaryotes as well as a number of eukaryotic model organisms (with the notable exception of vertebrates). Relationships between gene length and codon usage bias, however, remain unexplained. Intriguing correlations between expression patterns and protein divergence suggest some general mechanisms underlying protein evolution.  相似文献   

17.
A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade‐off between stability and activity. Although a stability‐activity trade‐off has been observed for well‐characterized examples, such a trade‐off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade‐off, I investigated the stability‐activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability‐activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade‐off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability‐activity trade‐off during enzyme adaptation.  相似文献   

18.
Many protein pairs that share the same fold do not have any detectable sequence similarity, providing a valuable source of information for studying sequence-structure relationship. In this study, we use a stringent data set of structurally similar, sequence-dissimilar protein pairs to characterize residues that may play a role in the determination of protein structure and/or function. For each protein in the database, we identify amino-acid positions that show residue conservation within both close and distant family members. These positions are termed "persistently conserved". We then proceed to determine the "mutually" persistently conserved (MPC) positions: those structurally aligned positions in a protein pair that are persistently conserved in both pair mates. Because of their intra- and interfamily conservation, these positions are good candidates for determining protein fold and function. We find that 45% of the persistently conserved positions are mutually conserved. A significant fraction of them are located in critical positions for secondary structure determination, they are mostly buried, and many of them form spatial clusters within their protein structures. A substitution matrix based on the subset of MPC positions shows two distinct characteristics: (i) it is different from other available matrices, even those that are derived from structural alignments; (ii) its relative entropy is high, emphasizing the special residue restrictions imposed on these positions. Such a substitution matrix should be valuable for protein design experiments.  相似文献   

19.
20.
The use of amino acid sequence analysis in assessing evolution   总被引:1,自引:0,他引:1  
The thirteen year history of assessing evolution by amino acid sequence analysis has made apparent the limitations imposed upon this system by the finite nature of the characters. This finiteness exists on several levels and ultimately expresses itself as parallelism, back mutation and the retention of primitive characters in the sequences of proteins from present day species and the putative ancestral protein chains. Sequence analysis shares these problems with other molecular approaches, but because it is concerned both with the nucleotide substitutions in the genome and with the functional roles of proteins, it has unique advantages. For example, the large fluctuation in the rate of fixation of mutations in a protein's evolution can be detected and used to point out the unreliability of any molecular clock for estimating divergence dates. Moreover, when consideration is given to studies which assign functional significance to specific amino acid sites in a protein, changes in function during the descent of a protein can be appreciated and their significance correlated with organismal evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号