首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Adrenomedullin is a secreted peptide hormone with multiple functions. Although a number of reports have indicated that adrenomedullin may be involved in tumor progression, its mechanism of action remains obscure. In this study, we have analysed the signal transduction pathway activated by adrenomedullin in human glioma cells. Our results revealed that adrenomedullin induced the phosphorylation of both c-Jun and JNK in glioblastoma cells. Silencing JNK expression with siRNA reversed the phosphorylation of c-Jun induced by adrenomedullin, indicating that JNK is responsible of c-Jun activation. In addition, electrophoretic mobility-shift assays showed that the increase in phosphorylation of c-Jun was associated with increased AP-1 DNA binding activity. Supershift assays and co-immunoprecipitation demonstrated that c-Jun and JunD are part of the AP-1 complex, indicating that activated c-Jun is dimerized with JunD in response to adrenomedullin. Furthermore, adrenomedullin was shown to promote cell transit beyond cell cycle phases with a concomittant increase in cyclin D1 protein level, suggesting that adrenomedullin effect cell proliferation through up-regulation of cyclin D1. The inhibition of JNK activation or the suppression of c-Jun or JunD expression with siRNA impaired the effects of adrenomedullin on cell proliferation and on cyclin D1. Taken together, these data demonstrate that activation of cJun/JNK pathway is involved in the growth regulatory activity of adrenomedullin in glioblastoma cells.  相似文献   

6.
To understand the role of redox-sensitive mechanisms in vascular smooth muscle cell (VSMC) growth, we have studied the effect of N-acetylcysteine (NAC), a thiol antioxidant, and diphenyleneiodonium (DPI), a potent NADH/NADPH oxidase inhibitor, on serum-, platelet-derived growth factor BB-, and thrombin-induced ERK2, JNK1, and p38 mitogen-activated protein (MAP) kinase activation; c-Fos, c-Jun, and JunB expression; and DNA synthesis. Both NAC and DPI completely inhibited agonist-induced AP-1 activity and DNA synthesis in VSMC. On the contrary, these compounds had differential effects on agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression. NAC inhibited agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression except for platelet-derived growth factor BB-induced ERK2 activation. In contrast, DPI only inhibited agonist-induced p38 MAP kinase activation and c-Fos and JunB expression. Antibody supershift assays indicated the presence of c-Fos and JunB in the AP-1 complex formed in response to all three agonists. In addition, cotransfection of VSMC with expression plasmids for c-Fos and members of the Jun family along with the AP-1-dependent reporter gene revealed that AP-1 with c-Fos and JunB composition exhibited a higher transactivating activity than AP-1 with other compositions tested. All three agonists significantly stimulated reactive oxygen species production, and this effect was inhibited by both NAC and DPI. Together, these results strongly suggest a role for redox-sensitive mechanisms in agonist-induced ERK2, JNK1, and p38 MAP kinase activation; c-Fos, c-Jun, and JunB expression; AP-1 activity; and DNA synthesis in VSMC. These results also suggest a role for NADH/NADPH oxidase activity in some subset of early signaling events such as p38 MAP kinase activation and c-Fos and JunB induction, which appear to be important in agonist-induced AP-1 activity and DNA synthesis in VSMC.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号