首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-linking surface Ig on human B cells, or the TCR complex on T cells leads to the rapid appearance of newly tyrosine phosphorylated proteins. This is associated with inositol phospholipid turnover and a rise in intracellular calcium. Incubation of human B or T lymphocytes with the tyrosine kinase inhibitors, herbimycin and genistein, inhibits new tyrosine phosphorylation after receptor-linked activation. This is associated with complete abrogation of the increase in intracellular calcium in these lymphocytes and inhibition of inositol phospholipid turnover. Herbimycin- and genistein-treated lymphocytes are nevertheless still capable of responding to aluminum fluoride with a rise in intracellular calcium. These data support the contention that a B cell-associated protein tyrosine kinase regulates signal transduction via phospholipase C. CD45, the membrane associated protein tyrosine phosphatase, and PMA that activates protein kinase C, both inhibit the calcium response in B lymphocytes induced by receptor cross-linking. PMA and cross-linking CD45 both induced the appearance of tyrosine phosphorylated proteins in human B cells, although the pattern is quite distinct from that seen when surface lg is cross-linked. However, the induction of new tyrosine phosphorylation by anti-mu does not appear to be affected by these reagents. Although this may reflect an insensitivity of the tyrosine phosphorylation assay, it could indicate that regulation of the calcium response and regulation of the tyrosine kinase can be independent processes.  相似文献   

2.
The role of protein tyrosine kinases on glutamate release was investigated by determining the effect of broad range inhibitors of tyrosine kinases on the release of glutamate from rat hippocampal synaptosomes. We found that lavendustin A and herbimycin A did not inhibit glutamate release stimulated by 15 mM KCl, but genistein, also a broad range inhibitor of tyrosine kinases did inhibit the intracellular Ca(2+) concentration response to KCl and, concomitantly, decreased glutamate release evoked by the same stimulus, in a dose-dependent manner. These effects were not observed with the inactive analogue genistin. Therefore, we investigated the mechanism whereby genistein modulates Ca(2+) influx and glutamate release. Studies with voltage-gated Ca(2+) channel inhibitors showed that omega-conotoxin GVIA did not further inhibit glutamate release or the Ca(2+) influx stimulated by KCl in the presence of genistein. This tyrosine kinase inhibitor and omega-agatoxin IVA had a partially additive effect on those events. Nitrendipine did not reduce significantly the KCl-induced responses. Genistein further reduced Ca(2+) influx in response to KCl in the presence of nitrendipine, omega-conotoxin GVIA and omega-agatoxin IVA, simultaneously. The effect of tyrosine phosphatase inhibitors was also tested on the influx of Ca(2+) and on glutamate release stimulated by KCl-depolarization. We found that the broad range inhibitors sodium orthovanadate and dephostatin did not significantly affect these KCl-evoked events.Our results suggest that genistein inhibits glutamate release and Ca(2+) influx in response to KCl independently of tyrosine kinase inhibition, and that tyrosine kinases and phosphatases are not key regulators of glutamate release in hippocampal nerve terminals.  相似文献   

3.
The skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) is a potent inhibitor of gap junctional intercellular communication. In the present study, the inhibition of cell-cell communication by TPA has been investigated in primary bone cells from newborn rat calvaria, with an emphasis on the involvement of intracellular pH (pH(i)) and cytosolic calcium ([Ca(+2)](i)) in this process. The results show that TPA (5 x 10(-)(8) M) caused a complete inhibition of intercellular communication within 40-60 min. The intercellular communication was fully restored after overnight incubation in the presence of TPA. This effect was found to be associated with an elevation of pH(i). However, neither an increase of pH(i) alone nor exposure to TPA, under conditions preventing pH(i)-shift, were found to affect intercellular communication. It is suggested that the inhibition of intercellular communication, in the presence of TPA, depends on the pH(i)-shift itself rather than on the absolute value of pH(i). In addition, elevation of cytosolic calcium by ionomycin led to the termination of intercellular communication after 30 min. This inhibitory effect was abolished when the cells were incubated for overnight with TPA and then intracellular calcium was elevated by the addition of ionomycin. These results indicate that shift of pH(i) and the increase of intracellular calcium are involved in repression of intercellular communication by TPA.  相似文献   

4.
Depletion of inositol 1,4,5 trisphosphate-sensitive Ca2+ stores generates a yet unknown signal, which leads to increase in Ca2+ influx in different cell types [J.W. Putney Jr., A model for receptor-regulated calcium entry, Cell Calcium 7 (1986) 1-12]. Here, we describe a mechanism that modulates this store-operated Ca2+ entry (SOC). Ca2+ influx leads to inhibition of protein tyrosine phosphatase 1B (PTP1B) activity in HEK 293 cells [L. Sternfeld, et al., Tyrosine phosphatase PTP1B interacts with TRPV6 in vivo and plays a role in TRPV6-mediated calcium influx in HEK293 cells, Cell Signal 17 (2005) 951-960]. Since Ca2+ does not directly inhibit PTP1B, we assumed an intermediate signal, which links the rise in cytosolic Ca2+ concentration and PTP1B inhibition. We now show that Ca2+ influx is followed by generation of reactive oxygen species (ROS) and that it is reduced in cells preincubated with catalase. Furthermore, Ca2+-dependent inhibition of PTP1B can be abolished in the presence of catalase. H2O2 (100 microM) directly added to cells inhibits PTP1B and leads to increase in Ca2+ influx after store depletion. PP1, an inhibitor of the Src family tyrosine kinases, prevents H2O2-induced Ca2+ influx. Our results show that ROS act as fine tuning modulators of Ca2+ entry. We assume that the Ca2+ influx channel or a protein involved in its regulation remains tyrosine phosphorylated as a consequence of PTP1B inhibition by ROS. This leads to maintained Ca2+ influx in the manner of a positive feedback loop.  相似文献   

5.
Our aim was to study whether ultraviolet radiation produced any alterations in the subsequent signaling response of V79 fibroblasts to mitogenic stimulus. In ultraviolet C (UVC)-irradiated V79 fibroblasts, increase in cytosolic calcium in response to thrombin was nearly abolished in the presence of 3 mM external Ca(2+). UVC-treated V79 cells showed a greatly enhanced permeability to Ca(2+) which was reversed by pretreatment with genistein, a tyrosine kinase inhibitor. Genistein also alleviated the inhibition of thrombin response caused by UVC. In UVC-treated cells, significant activation of protein kinase C (PKC) occurred only on exposure to 3 mM external calcium and PKC inhibitors (H-7 or staurosporine) reversed UVC-induced adverse effects on the thrombin response. Therefore, it is likely that protein tyrosine phosphorylation by UVC may play a role in the subsequent inhibition of thrombin response in V79 cells through increased calcium influx and activation of PKC.  相似文献   

6.
We investigate the participation of tyrosine kinase, phosphatidylinositol-3-kinase, phospholipase C systems in the intracellular transduction pathways involved in the non-genomic stimulation of vasodilators compounds synthesis induced by progesterone (Pg). Using aortic strips isolated from female fertile Wistar rats, we showed that physiological concentrations of progesterone markedly increase prostacyclin synthesis in a very short time interval (45 s to 10 min) as well as nitric oxide release (5-30 min). The stimulatory action of progesterone on nitric oxide synthase (NOS) activity was maintained even in the presence of an antagonist of progesterone receptor, compound RU486. In contrast, in the presence of tyrosine kinase inhibitor (1 microM genistein) or phosphatidylinositol-3-kinase inhibitor (1 microM LY294002), the enhancement of nitric oxide elicited by 10-100 nM progesterone was completely suppressed. The steroid stimulates phopholipase C activity, inducing significant increase in diacylglycerol generation (5-15-min treatment). The presence of an inhibitor of protein kinase C (PKC) impaired the anti-aggregatory action of the hormone. Due to the fact that phospholipase C activation implies calcium mobilization, we investigate the role of changes in calcium fluxes on progesterone nitric oxide generation. We found that calcium influx from extracellular medium and calcium mobilization from internal pools was required. The present results suggest that, tyrosine kinase and phosphatidylinositol-3-kinase cascades are involved in progesterone nitric oxide synthase stimulation and that diacilglicerol/protein kinase C system may be relevant for physiological regulation of platelet aggregation process.  相似文献   

7.
Interferon-gamma (IFN-gamma) has multiple effects on Ca2+ signalling in polymorphonuclear neutrophils (PMNs), including evoked cytosolic Ca2+ transients, increased capacitative calcium influx and increased sequestration of Ca2+ in intracellular stores. The present study was conducted to elucidate the mechanism behind the Ca2+ transients. As observed before, the IFN-gamma-evoked Ca2+ signals were apparent when extracellular Ca2+ was removed. A new finding was that the proportion of responding cells and the extent of calcium release increased with increasing time in EGTA buffer. As assessed by N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated Ca2+ release, the intracellular stores were depleted during this incubation period, and the extent of depletion correlated well with the appearance of IFN-gamma-induced Ca2+ signals. This store dependence of the IFN-gamma-induced Ca2+ signals was confirmed by the appearance of IFN-gamma-evoked Ca2+ signals in the presence of extracellular Ca2+ after store depletion by thapsigargin. The appearance of IFN-gamma-mediated Ca2+-signals in the presence of EGTA indicates that IFN-gamma stimulates Ca2+ release from intracellular stores. This was confirmed by the inability of the calcium transportation blocker La3+ to abolish the IFN-gamma response and the total abrogation of the response by the phospholipase C inhibitor U73122. Although these latter results imply a role for inositol 1,4,5-trisphosphate(IP3) in IFN-gamma signalling, comparison of IFN-gamma-evoked responses with fMLP responses revealed clear differences that suggest different signal-transduction pathways. However, responses to fMLP and IFN-gamma were both depressed by pertussis toxin, and the IFN-gamma responses were, in addition, inhibited by the tyrosine kinase inhibitor genistein. Further evidence of the involvement of tyrosine kinase was a slight stimulatory effect of the protein tyrosine phosphatase inhibitor sodium orthovanadate. The PI-3K activity was of minor importance. In conclusion, we present evidence of a novel signal-transduction mechanism for IFN-gamma in PMNs, dependent on tyrosine kinase activity, a pertussis toxin-sensitive G protein and phospholipase C activity.  相似文献   

8.
Previously, we reported that emptying of intracellular Ca(2+) pools with endoplasmatic Ca(2+)-ATP-ase inhibitor thapsigargin leads to the Na(+) influx in human lymphocytes (M. Tepel et al., 1994, J. Biol. Chem. 269, 26239-26242). In the present study we examined the mechanism underlying the thapsigargin-induced Na(+) entry. We found that the thapsigargin-induced increase in Na(+) concentration was effectively inhibited by three structurally unrelated phospholipase A(2) (PLA(2)) inhibitors, p-bromophenacyl bromide, 3-(4-octadecyl)-benzoylacrylic acid (OBAA), and bromoenol lactone (BEL). The thapsigargin-induced Na(+) influx could be mimicked by PLA(2) exogenously added to the lymphocyte suspension. In addition, thapsigargin stimulated formation of arachidonic acid (AA), the physiological PLA(2) product. AA induced Na(+) entry in a time- and concentration-dependent fashion. Both, thapsigargin-induced Na(+) influx and AA liberation were completely inhibited in the presence of tyrosine kinase inhibitor genistein but not in the absence of extracellular Ca(2+). Collectively, these data show that thapsigargin-induced Na(+) entry is associated with tyrosine kinase-dependent stimulation of PLA(2).  相似文献   

9.
Con A刺激致T淋巴细胞胞浆游离Ca~(2+)浓度升高   总被引:1,自引:0,他引:1  
本文分别应用荧光Ca~(2+)指示剂Quin2和Indo-1研究了Con A刺激的T淋巴细胞[Ca~(2+)]i升高过程及其发生机制.结果表明Con A与T淋巴细胞作用可导致细胞[Ca~(2+)]i的迅速升高.这种增加的胞内游离Ca~(2+)不仅来自胞外Ca~(2+)的内流,也来源于胞内钙库的释放.其中Ca~(2+)内流与T细胞钙通道的开放有关.可被钙通道抑制剂戊脉胺抑制,细胞的去极化及钾通道阻断剂四乙胺均不能阻断Ca~(2+)的内流,提示Ca~(2+)内流不是通过电位操纵的钙通道实现的,也与拥通道的开闭无关.Ca~(2+)内流可能是通过Con A受体活化的受体操纵的钙通道而实现的.  相似文献   

10.
Ca(2+) release from internal stores as a result of activation of phospholipase C or inhibition of the endoplasmic reticulum pump is accompanied by Ca(2+) influx from the extracellular space. Measurement of intracellular calcium concentration and fluorescence quenching in Fura2-loaded cells showed that platelets preincubated in lithium have significantly higher basal, but lower agonist-stimulated influx of Mn(2+) (acting as a surrogate of Ca(2+) influx), than platelets reloaded with calcium in a normal sodium medium. There is no difference in the basal entry of divalent ion in platelets preincubated in sodium, lithium, or N-methyl glucamine in the absence of calcium. In platelets preincubated in lithium there is a higher basal Mn(2+) entry without further increase upon store depletion by thapsigargin. In contrast, a significant increase in the divalent ion influx was found in sodium or N-methyl glucamine attributable to the opening of channels sensitive to store depletion. In the absence of extracellular calcium, the empty store opens channels and Li(+) did not have additional effect on channels that are already open. The refilling of the stores with Ca(2+) suppresses Mn(2+) entry after sodium or NMG preincubation, but not after lithium preincubation. We propose that lithium induces a calcium influx throughout store-operated channels. This hypothesis may explain the lack of additivity, in cell preincubated in lithium, of basal entry and thapsigargin-triggered entry of calcium.  相似文献   

11.
In the presence of endothelin, there was a rapid increase in the 45Ca++ efflux from primary cultured rat vascular smooth muscle cells, both in physiological salt solution and in calcium free medium containing 2 mM EGTA. The 45Ca++ influx was not affected. The endothelin-induced, transient increase in cytosolic calcium concentration is probably mainly due to release of calcium from the intracellular store in vascular smooth muscle cells.  相似文献   

12.
《Cell calcium》2016,59(6):598-605
TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.  相似文献   

13.
Bruton's tyrosine kinase (Btk) is essential for B-lineage development and represents an emerging family of non-receptor tyrosine kinases implicated in signal transduction events initiated by a range of cell surface receptors. Increased dosage of Btk in normal B cells resulted in a striking enhancement of extracellular calcium influx following B-cell antigen receptor (BCR) cross-linking. Ectopic expression of Btk, or related Btk/Tec family kinases, restored deficient extracellular Ca2+ influx in a series of novel Btk-deficient human B-cell lines. Btk and phospholipase Cgamma (PLCgamma) co-expression resulted in tyrosine phosphorylation of PLCgamma and required the same Btk domains as those for Btk-dependent calcium influx. Receptor-dependent Btk activation led to enhanced peak inositol trisphosphate (IP3) generation and depletion of thapsigargin (Tg)-sensitive intracellular calcium stores. These results suggest that Btk maintains increased intracellular calcium levels by controlling a Tg-sensitive, IP3-gated calcium store(s) that regulates store-operated calcium entry. Overexpression of dominant-negative Syk dramatically reduced the initial phase calcium response, demonstrating that Btk/Tec and Syk family kinases may exert distinct effects on calcium signaling. Finally, co-cross-linking of the BCR and the inhibitory receptor, FcgammaRIIb1, completely abrogated Btk-dependent IP3 production and calcium store depletion. Together, these data demonstrate that Btk functions at a critical crossroads in the events controlling calcium signaling by regulating peak IP3 levels and calcium store depletion.  相似文献   

14.
Nanosecond pulsed electric fields (nsPEFs) are hypothesized to affect intracellular structures in living cells providing a new means to modulate cell signal transduction mechanisms. The effects of nsPEFs on the release of internal calcium and activation of calcium influx in HL-60 cells were investigated by using real time fluorescent microscopy with Fluo-3 and fluorometry with Fura-2. nsPEFs induced an increase in intracellular calcium levels that was seen in all cells. With pulses of 60 ns duration and electric fields between 4 and 15 kV/cm, intracellular calcium increased 200-700 nM, respectively, above basal levels (approximately 100 nM), while the uptake of propidium iodide was absent. This suggests that increases in intracellular calcium were not because of plasma membrane electroporation. nsPEF and the purinergic agonist UTP induced calcium mobilization in the presence and absence of extracellular calcium with similar kinetics and appeared to target the same inositol 1,4,5-trisphosphate- and thapsigargin-sensitive calcium pools in the endoplasmic reticulum. For cells exposed to either nsPEF or UTP in the absence of extracellular calcium, there was an electric field-dependent or UTP dose-dependent increase in capacitative calcium entry when calcium was added to the extracellular media. These findings suggest that nsPEFs, like ligand-mediated responses, release calcium from similar internal calcium pools and thus activate plasma membrane calcium influx channels or capacitative calcium entry.  相似文献   

15.
In liver cells, the influx of Na+ mediated by nonselective cation (NSC) channels in the plasma membrane contributes importantly to regulation of cell volume. Under basal conditions, channels are closed; but both physiologic (e.g. insulin) and pathologic (e.g. oxidative stress) stimuli that are known to stimulate tyrosine kinases are associated with large increases in membrane Na+ permeability to approximately 80 pA/pF or more. Consequently, the purpose of these studies was to evaluate whether volume-sensitive tyrosine kinases mediate cell volume increases through effects on the activity or distribution of NSC channel proteins. In HTC hepatoma cells, decreases in cell volume evoked by hypertonic exposure increased total cellular tyrosine kinase activity approximately 20-fold. Moreover, hypertonic exposure (320-400 mosM) was followed after a delay by NSC channel activation and partial recovery of cell volume toward basal values (regulatory volume increase (RVI)). The tyrosine kinase inhibitors genistein and erbstatin prevented both NSC channel activation and RVI. Similarly, hypertonic exposure resulted in an increase in p60(c-src) activity, and intracellular dialysis with recombinant p60(c-src) led to activation of NSC currents in the absence of an osmolar gradient. Utilizing FM1-43 fluorescence, exposure to hypertonic media caused a rapid increase in the rate of exocytosis of approximately 40% (p < 0.01), and genistein inhibited both exocytosis and channel activation. These findings indicate that volume-sensitive increases in p60(c-src) and/or related tyrosine kinases play a key role in the regulation of membrane Na+ permeability, suggesting that increases in the NSC conductance may be mediated in part through rapid recruitment of a distinct pool of channel-containing vesicles.  相似文献   

16.
Numerous hormones and neurotransmitters activate cells by increasing cytosolic calcium concentration ([Ca(2+)](i)), a key regulatory factor for many cellular processes. A pivotal feature of these Ca(2+) signals is the release of Ca(2+) from intracellular stores, which is followed by activation of extracellular calcium influx, allowing refilling of the stores by SERCA pumps associated with the endoplasmic reticulum. Although the mechanisms of calcium release and calcium influx have been extensively studied, the biology of the Ca(2+) stores is poorly understood. The presence of heterogeneous calcium pools in cells has been previously reported [1] [2] [3]. Although recent technical improvements have confirmed this heterogeneity [4], knowledge about the mechanisms underlying Ca(2+) transport within the stores is very scarce and rather speculative. A recent study in polarized exocrine cells [5] has revealed the existence of Ca(2+) tunneling from basolateral stores to luminal pools, where Ca(2+) is initially released upon cell activation. Here, we present evidence that, during stimulation, Ca(2+) transported into basolateral stores by SERCA pumps is conveyed toward the luminal pools driven by proton gradients generated by vacuolar H(+)-ATPases. This finding unveils a new aspect of the machinery of Ca(2+) stores.  相似文献   

17.
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular bulk degradation pathway that plays critical roles in eliminating intracellular pathogens, presenting endogenous Ags, and regulating T lymphocyte survival and proliferation. In this study, we have investigated the role of autophagy in regulating the endoplasmic reticulum (ER) compartment in T lymphocytes. We found that ER content is expanded in mature autophagy-related protein (Atg) 7-deficient T lymphocytes. Atg7-deficient T cells stimulated through the TCR display impaired influx, but not efflux, of calcium, and ER calcium stores are increased in Atg7-deficient T cells. Treatment with the ER sarco/ER Ca(2+)-ATPase pump inhibitor thapsigargin rescues the calcium influx defect in Atg7-deficient T lymphocytes, suggesting that this impairment is caused by an intrinsic defect in ER. Furthermore, we found that the stimulation-induced redistribution of stromal interaction molecule-1, a critical event for the store-operated Ca(2+) release-activated Ca(2+) channel opening, is impaired in Atg7-deficient T cells. Together, these findings indicate that the expanded ER compartment in Atg7-deficient T cells contains increased calcium stores, and the inability of these stores to be depleted causes defective calcium influx in these cells. Our results demonstrate that autophagy plays an important role in maintaining ER and calcium homeostasis in T lymphocytes.  相似文献   

18.
This paper reports on potential cellular targets of azaspiracid-1 (AZ-1), a new phycotoxin that causes diarrhoeic and neurotoxic symptoms and whose mechanism of action is unknown. In excitable neuroblastoma cells, the systems studied were membrane potential, F-actin levels and mitochondrial membrane potential. AZ-1 does not modify mitochondrial activity but decreases F-actin concentration. These results indicate that the toxin does not have an apoptotic effect but uses actin for some of its effects. Therefore, cytoskeleton seems to be an important cellular target for AZ-1 effect. AZ-1 does not induce any modification in membrane potential, which does not support for neurotoxic effects. In human lymphocytes, cAMP, cytosolic calcium and cytosolic pH (pHi) levels were also studied. AZ-1 increases cytosolic calcium and cAMP levels and does not affect pHi (alkalinization). Cytosolic calcium increase seems to be dependent on both the release of calcium from intracellular Ca(2+) pools and the influx from extracellular media through Ni(2+)-blockable channels. AZ-1-induced Ca(2+) increase is negatively modulated by protein kinase C (PKC) activation, protein phosphatases 1 and 2A (PP1 and PP2A) inhibition and cAMP increasing agents. The effect of AZ-1 in cAMP is not extracellularly Ca(2+) dependent and insensitive to okadaic acid (OA).  相似文献   

19.
Prolactin (PRL) involvement in the regulation of luteal steroidogenesis in pigs during the early luteal phase and pregnancy is well documented. The intracellular mechanism of PRL action in steroidogenic cells, however, is not fully recognized yet. In the current study, we have tested the hypothesis that protein kinase C (PKC) and tyrosine kinases (PTK) as well as serine-threonine (PP) and tyrosine phosphatases (PTP) are involved in PRL signaling in luteal cells originated from the early corpora lutea (CL) of cyclic sows. Luteal cells (50 000 cells/ml M199) were incubated for 8 h (37 degrees C) with PRL (200 ng) and low density lipoproteins (LDL) to stimulate P(4) production. In addition, treatments included: PKC inhibitors--staurosporine and chelerythrine chloride; tyrosine kinase inhibitors--genistein and tyrphostin; serine-threonine phosphatase inhibitors--okadaic acid, cantharidin (inhibitors of PP1/2A) and cypermethrin (inhibitor of PP2B); and tyrosine phosphatase inhibitor--sodium orthovanadate. Moreover, after incubation (37 degrees C) with PRL (200 ng) for 2, 5, 10 or 20 min, luteal cells were homogenized and cytosolic as well as membrane fractions have been obtained. This was followed by partial purification of the subcellular fractions by DEAE-cellulose chromatography and determination of PKC activity by measuring the transfer of (32)P from [gamma-(32)P]ATP to histone III-S. In unstimulated porcine luteal cells the major proportion of PKC activity was present in the cytosol. Incubation of luteal cells with PRL resulted in a rapid, time dependent increase in the amount of PKC activity in the membrane fraction and a decrease in the amount of PKC activity in the cytosol fraction. PKC activity in the membrane fraction was maximal after 5 min of exposure the cells to PRL. Inhibitors of PKC and PTK suppressed PRL and LDL-induced P(4) production by porcine luteal cells. It is of interest that stimulated P(4) production was also reduced by inhibitors of PTP and PP1/2A (okadaic acid, cantharidin). In contrast, cypermethrin did not affect P(4) production stimulated by PRL and LDL. The results of the current study support the hypothesis that PKC and tyrosine kinases are intracellular mediators of PRL action in porcine luteal cells during the first days of the estrous cycle. The involvement of protein phosphatases in transmission of the PRL signal in early luteal cells in pigs is also suggested.  相似文献   

20.
Prostaglandin E2 (PGE2) can interact with at least four cell surface receptors (EP1-EP4) in smooth muscle, which evokes a variety of intracellular responses depending on the G protein to which the cell surface receptors are coupled. The activation of G protein-coupled receptors and receptor tyrosine kinases can lead to the phosphorylation of tyrosine residues of various cellular proteins. The aim of this study was to examine the role of tyrosine phosphorylation in PGE2, vanadate and carbachol-evoked contractions. PGE2, vanadate, and carbachol induced contractile motor responses in the longitudinal smooth muscle of rabbit duodenum. PGE2-evoked contractions decreased in the presence of genistein or tyrphostin B44. PGE2-evoked contractions increased in the presence of vanadate. Vanadate-evoked contractions decreased in the presence of genistein. In contrast, tyrphostin 47 increased the vanadate-evoked contractions. Vanadate-evoked contractions were reduced in the presence of Ca2+-free solutions, verapamil, or indomethacin. U-73122 decreased PGE2-evoked contractions. Carbachol-evoked contractions decreased in the presence of genistein, tyrphostin B44 or tyrphostin 47. Our results suggest that PGE2, vanadate or carbachol-evoked contractions are mediated by protein tyrosine phosphorylation. Protein tyrosine phosphorylation might cause an increase in calcium influx through voltage-dependent channels and the release of prostaglandins in the longitudinal smooth muscle of the rabbit duodenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号