首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is now some evidence that chronic fatigue syndrome is accompanied by an activation of the inflammatory response system and by increased oxidative and nitrosative stress. Nuclear factor kappa beta (NFkappabeta) is the major upstream, intracellular mechanism which regulates inflammatory and oxidative stress mediators. In order to examine the role of NFkappabeta in the pathophysiology of CFS, this study examines the production of NFkappabeta p50 in unstimulated, 10 ng/mL TNF-alpha (tumor necrosis factor alpha) and 50 ng/mL PMA (phorbolmyristate acetate) stimulated peripheral blood lymphocytes of 18 unmedicated patients with CFS and 18 age-sex matched controls. The unstimulated (F=19.4, df=1/34, p=0.0002), TNF-alpha-(F=14.0, df=1/34, p=0.0009) and PMA-(F=7.9, df=1/34, p=0.008) stimulated production of NFkappabeta were significantly higher in CFS patients than in controls. There were significant and positive correlations between the production of NFkappabeta and the severity of illness as measured with the FibroFatigue scale and with symptoms, such as aches and pain, muscular tension, fatigue, irritability, sadness, and the subjective feeling of infection. The results show that an intracellular inflammatory response in the white blood cells plays an important role in the pathophysiology of CFS and that previous findings on increased oxidative stress and inflammation in CFS may be attributed to an increased production of NFkappabeta. The results suggest that the symptoms of CFS, such as fatigue, muscular tension, depressive symptoms and the feeling of infection reflect a genuine inflammatory response in those patients. It is suggested that CFS patients should be treated with antioxidants, which inhibit the production of NFkappabeta, such as curcumin, N-Acetyl-Cysteine, quercitin, silimarin, lipoic acid and omega-3 fatty acids.  相似文献   

2.
The myeloperoxidase (MPO)-hydrogen peroxide-halide system is an efficient oxygen-dependent antimicrobial component of polymorphonuclear leukocyte (PMN)-mediated host defense. However, MPO deficiency results in few clinical consequences indicating the activation of compensatory mechanisms. Here, we determined possible mechanisms protecting the host using MPO(-/-) mice challenged with live gram-negative bacterium Escherichia coli. We observed that MPO(-/-) mice unexpectedly had improved survival compared with wild-type (WT) mice within 5-12 h after intraperitoneal E. coli challenge. Lungs of MPO(-/-) mice also demonstrated lower bacterial colonization and markedly attenuated increases in microvascular permeability and edema formation after E. coli challenge compared with WT. However, PMN sequestration in lungs of both groups was similar. Basal inducible nitric oxide synthase (iNOS) expression was significantly elevated in lungs and PMNs of MPO(-/-) mice, and NO production was increased two- to sixfold compared with WT. Nitrotyrosine levels doubled in lungs of WT mice within 1 h after E. coli challenge but did not change in MPO(-/-) mice. Inhibition of iNOS in MPO(-/-) mice significantly increased lung edema and reduced their survival after E. coli challenge, but iNOS inhibitor had the opposite effect in WT mice. Thus augmented iNOS expression and NO production in MPO(-/-) mice compensate for the lack of HOCl-mediated bacterial killing, and the absence of MPO-derived oxidants mitigates E. coli sepsis-induced lung inflammation and injury.  相似文献   

3.
The inducible nitric oxide synthase (iNOS) is abundantly expressed by smooth muscle cells and macrophages in atherosclerotic lesions. Apolipoprotein E-deficient (apoE(-/-)) mice develop early and advanced atherosclerotic lesions. The role of iNOS in both early and advanced atherosclerotic formation was determined in apoE(-/-) mice. Mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. At 12 weeks of age on chow diet, iNOS(-/-)/apoE(-/-) mice developed comparable sizes of early atherosclerotic lesions in the aortic root as did iNOS(+/+)/apoE(-/-) mice (30,993+/-4746 vs. 26,648+/-6815 microm(2)/section; P=0.608). After being fed the Western diet for 12 weeks, iNOS(-/-)/apoE(-/-) mice developed significantly smaller advanced lesions than iNOS(+/+)/apoE(-/-) mice (458,734+/-14,942 vs. 519,570+/-22,098 microm(2)/section; P=0.029). This reduction in lesion formation could not be explained by differences in plasma lipid levels. To examine whether iNOS contributed to LDL oxidation, smooth muscle cells were isolated from the aorta, activated with TNF-alpha, and then incubated with native LDL in the absence or presence of N-Omega-nitro-L-arginine methyl ester (L-NAME), a specific NOS inhibitor. L-NAME significantly inhibited LDL oxidation by smooth muscle cells from iNOS(+/+)/apoE(-/-) mice (P=0.048), but it had no effect on LDL oxidation by cells from iNOS(-/-)/apoE(-/-) mice. iNOS(-/-)/apoE(-/-) mice had a significantly lower plasma lipoperoxide level on the Western diet (2.74+/-0.23 vs. 3.89+/-0.41 microM MDA; P=0.021) but not on chow diet (1.02+/-0.07 vs. 1.51+/-0.29 microM MDA; P=0.11). Thus, the absence of iNOS-mediated LDL oxidation may contribute to the reduction in advanced lesion formation of iNOS(-/-)/apoE(-/-) mice.  相似文献   

4.
The aim of this study was to compare the effects on NO production of IL-4, IL-10, and IL-13 with those of TGF-beta. RA synovial cells were stimulated for 24 h with IL-1 beta (1 ng/ml), TNF-alpha (500 pg/ml), IFN-gamma (10(-4)IU/ml) alone or in combination. Nitrite was determined by the Griess reaction, S-nitrosothiols by fluorescence, and inducible NO synthase (iNOS) by immunofluorescence and fluorescence activated cell sorter analysis (FACS). In other experiments, IL-4, IL-10, IL-13, and TGF beta were used at various concentrations and were added in combination with proinflammatory cytokines. The addition of IL-1 beta, TNF-alpha, and IFN-gamma together increased nitrite production: 257.5 +/- 35.8 % and S-nitrosothiol production : 413 +/- 29%, P < 0.001. None of these cytokines added alone had any significant effect. iNOS synthesis increased with NO production. IL-4, IL-10, IL-13, and TGF beta strongly decreased the NO production caused by the combination of IL-1 beta, TNF-alpha, and IFN-gamma. These results demonstrate that stimulated RA synoviocytes produce S-nitrosothiols, bioactive NO* compounds, in similar quantities to nitrite. IL-4, IL-10, IL-13, and TGF-beta decrease NO production by RA synovial cells. The anti-inflammatory properties of these cytokines may thus be due at least in part to their effect on NO metabolism.  相似文献   

5.
6.
We studied by ultrafast time-resolved absorption spectroscopy the geminate recombination of NO to the oxygenase domain of the inducible NO synthase, iNOSoxy, and to mutated proteins at position Trp-457. This tryptophan interacts with the tetrahydrobiopterin cofactor BH4, and W457A/F mutations largely reduced the catalytic formation of NO. BH4 decreases the rate of NO rebinding to the ferric iNOSoxy compared with that measured in its absence. The pterin has a larger effect on W457A/F than on the WT protein by increasing NO release from the protein. Therefore, BH4 raises the energy barrier for NO recombination to the mutated proteins in contrast with our observations on eNOS (Slama-Schwok, A., Négrerie, M., Berka, V., Lambry, J.-C., Tsai, A.-L., Vos, M., and Martin, J.-L. (2002) J. Biol. Chem. 277, 7581-7586). Thus, we show a differential effect of BH4 on NO release from eNOS and iNOS. Compared with the position of this residue in the BH4-repleted enzyme, simulations of the NO dissociation dynamics point out at a swing of Trp-457 toward the missing pterin in the absence of BH4. NO geminate-rebinding data show a more efficient NO release from eNOS than from iNOS once NO is formed. Consistently, NO produced by iNOS is regulated by its ferric nitrosyl complex in contrast with eNOS. We show that the small enhancement of the NO geminate recombination rate in W457A/F compared with that in the WT enzyme cannot explain the decrease of NO yield because of the mutation; the major effect of the mutation thus arises from an uncoupled catalysis (Wang, Z. Q., Wei, C. C., Ghosh, S., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) Biochemistry 40, 12819-12825).  相似文献   

7.
Glial activation contiguous to deposits of amyloid peptide (Abeta) is a characteristic feature in Alzheimer's disease. We performed complementary in vitro and in vivo experiments to study the extent, kinetics, and mechanisms of microglial generation of nitric oxide (NO) induced by challenge with Abeta. We showed that Abeta fibrils dose-dependently induced a marked release of stable metabolites of NO in vivo that was strikingly similar regarding extent and temporal profile to the one in the parallel designed microglial cell culture experiments. However, costimulation with interferon gamma, which was a prerequisite for Abeta-induced NO generation in vitro, was not required in vivo, demonstrating that factors are present in the living brain that activate glial cells synergistically with Abeta. Therefore, in Alzheimer's disease, deposits of Abeta fibrils alone may be sufficient to induce a chronic release of neurotoxic microglial products, explaining the progressive neurodegeneration associated with this disease. Our observation that systemic administration of selective iNOS inhibitors abolishes Abeta-induced NO generation in vivo may have implications for therapy of Alzheimer's disease.  相似文献   

8.

Background

Chronic fatigue syndrome (CFS), multiple chemical sensitivity (MCS), and fibromyalgia (FM) commonly co-occur. Some propose that CFS, MCS, and FM are manifestations of the same illness based on high rates of co-occurrence and overlapping diagnostic criteria. This study seeks to differentiate these diagnoses by comparing individuals with one or more illness on functioning, psychiatric comorbidity, coping style, and in vivo physical measures.

Methods

Participants included 114 men and women who met criteria for CFS. FM was diagnosed during a physical examination, and MCS was assessed using a questionnaire. Participants were divided into four groups: CFS alone, CFS-MCS, CFS-FM, and CFS-MCS-FM. Self-report measures, a psychiatric interview, and in vivo physical measures were given.

Results

43.9% met criteria for CFS alone, 23.7% met criteria for CFS-MCS, 15.8% met criteria for CFS-FM, and 16.7% met criteria for CFS-MCS-FM. The CFS-MCS-FM group was more disabled than the CFS alone group on measures of physical functioning, general health, and bodily pain. In vivo measures did not differ, but the CFS-MCS-FM group rated exertion higher than the CFS alone group.

Conclusion

Individuals with CFS alone were the highest functioning group across several domains, such as disability, depression, and severity of symptoms. Participants with three diagnoses experienced the greatest amount of disability. While substantial co-occurrence of these illnesses was found, this study provides evidence that having more than one illness exacerbates one's disability beyond CFS alone.
  相似文献   

9.
10.
Nitric oxide (NO) regulates the biological activity of many enzymes and other functional proteins as well as gene expression. In this study, we tested whether pretreatment with NO regulates NO production in response to cytokines in cultured rat hepatocytes. Hepatocytes were recovered in fresh medium for 24 h following pretreatment with the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and stimulated to express the inducible NO synthase (iNOS) with interleukin-1beta and interferon-gamma or transfected with the human iNOS gene. NO pretreatment resulted in a significant increase in NO production without changing iNOS expression for both conditions. This effect, which did not occur in macrophages and smooth muscle cells, was inhibited when NO was scavenged using red blood cells. Pretreatment with oxidized SNAP, 8-Br-cGMP, NO(2)(-), or NO(3)(-) did not increase the cytokine-induced NO production. SNAP pretreatment increased cytosolic iNOS activity measured only in the absence of exogenous tetrahydrobiopterin (BH(4)). SNAP pretreatment suppressed the level of GTP cyclohydrolase I (GTPCHI) feedback regulatory protein (GFRP) and increased GTPCHI activity without changing GTPCHI protein level. SNAP pretreatment also increased total cellular levels of biopterin and active iNOS dimer. These results suggest that SNAP pretreatment increased NO production from iNOS by elevating cellular BH(4) levels and promoting iNOS subunit dimerization through the suppression of GFRP levels and subsequent activation of GTPCHI.  相似文献   

11.
12.
It is commonly believed thatthe activity of NO synthase (NOS) solely controls NO production fromits substrates, L-Arg and O2. The Michaelis-Menten constant(Km) of NOS forL-Arg is in the micromolarrange; cellular levels of L-Argare much higher. However, evidence strongly suggests that cellularsupply of L-Arg may becomelimiting and lead to reduced NO and increased superoxide anion(O2·) formation, promotingcardiovascular dysfunction. Uptake ofL-Arg into cells occursprimarily (~85%) through the actions of aNa+-independent, carrier-mediatedtransporter (system y+). We haveexamined the effects of NOS agonists (substance P, bradykinin, and ACh)and NO donors(S-nitroso-N-acetyl-penicillamine and dipropylenetriamine NONOate) on transport ofL-Arg into bovine aorticendothelial cells (BAEC). Our results demonstrate that NOS agonistsincrease y+ transporter activity.A rapidly acting NO donor initially increases L-Arg uptake; however, afterlonger exposure, L-Arg uptake is suppressed. Exposure of BAEC withoutL-Arg to substance P and aCa2+ ionophore (A-23187) increasedO2· formation, which was blockedwith concurrent presence ofL-Arg or the NOS antagonistN-nitro-L-arginine methyl ester.We conclude that factors including NO itself controly+ transport function and theproduction of NO and O2·.

  相似文献   

13.
We evaluated the role of melatonin in endotoxemia caused by lipopolysaccharide (LPS) in unanesthetized rats. The expression of inducible isoform of nitric oxide synthase (iNOS) and the increase in the oxidative stress seem to be responsible for the failure of lungs, liver, and kidneys in endotoxemia. Bacterial LPS (10 mg/kg b. w) was i.v. injected 6 h before rats were killed and melatonin (10-60 mg/kg b.w.) was i.p. injected before and/or after LPS. Endotoxemia was associated with a significant rise in the serum levels of aspartate and alanine aminotransferases, gamma-glutamyl-transferase, alkaline phosphatase, creatinine, urea, and uric acid, and hence liver and renal dysfunction. LPS also increased serum levels of cholesterol and triglycerides and reduced glucose levels. Melatonin administration counteracted these organ and metabolic alterations at doses ranging between 20 and 60 mg/kg b. w. Melatonin significantly decreased lung lipid peroxidation and counteracted the LPS-induced NO levels in lungs and liver. Our results also show an inhibition of iNOS activity in rat lungs by melatonin in a dose-dependent manner. Expression of iNOS mRNA in lungs and liver was significantly decreased by melatonin (60 mg/kg b. w., 58-65%). We conclude that melatonin inhibits NO production mainly by inhibition of iNOS expression. The inhibition of NO levels may account for the protection of the indoleamine against LPS-induced endotoxemia in rats.  相似文献   

14.
15.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

16.
One proposed hypothesis regarding the etiology of chronic fatigue syndrome (CFS) is that there is a subgroup of patients in which symptom onset is precipitated by a viral infection. If this is indeed true, then one would anticipate a greater incidence of the emergence of CFS symptoms during months when viral infections occur with the greatest frequency. The current community-based epidemiology study examined the month of symptom onset for 31 patients with CFS and 44 others with idiopathic chronic fatigue (ICF). It was determined that the distribution of the month of illness onset for the CFS and ICF groups was nonrandom, with greater numbers of participants than expected reporting an onset of CFS and ICF during January. (Chronobiology International, 18(2), 315-319, 2001)  相似文献   

17.
Individuals with chronic fatigue syndrome (CFS) have been shown to have reduced activity levels associated with heightened feelings of fatigue. Previous research has demonstrated that exercise training has beneficial effects on fatigue-related symptoms in individuals with CFS. PURPOSE: The aim of this study was to sustain an increase in daily physical activity in CFS patients for 4 weeks and assess the effects on fatigue, muscle pain and overall mood. METHODS: Six CFS and seven sedentary controls were studied. Daily activity was assessed by a CSA accelerometer. Following a two week baseline period, CFS subjects were asked to increase their daily physical activity by 30% over baseline by walking a prescribed amount each day for a period of four weeks. Fatigue, muscle pain and overall mood were reported daily using a 0 to 100 visual analog scale and weekly using the Profile of Mood States (Bipolar) questionnaire. RESULTS: CFS patients had significantly lower daily activity counts than controls (162.5 +/- 51.7 x 103 counts/day vs. 267.2 +/- 79.5 x 103 counts/day) during a 2-week baseline period. At baseline, the CFS patients reported significantly (P < 0.01) higher fatigue and muscle pain intensity compared to controls but the groups did not differ in overall mood. CFS subjects increased their daily activity by 28 +/- 19.7% over a 4 week period. Overall mood and muscle pain worsened in the CFS patients with increased activity. CONCLUSION: CFS patients were able to increase their daily physical activity for a period of four weeks. In contrast to previous studies fatigue, muscle pain, and overall mood did not improve with increased activity. Increased activity was not presented as a treatment which may account for the differential findings between this and previous studies. The results suggest that a daily "activity limit" may exist in this population. Future studies on the impact of physical activity on the symptoms of CFS patients are needed.  相似文献   

18.
19.
20.

Background  

Fatigue is a crucial sensation that triggers rest, yet its underlying neuronal mechanisms remain unclear. Intense long-term fatigue is a symptom of chronic fatigue syndrome, which is used as a model to study the mechanisms underlying fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号