首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Platelet activation is involved in the pathogenesis of atherosclerosis and venous thromboembolism, and might therefore be a possible link between the two entities. Prolactin and leptin have recently been recognized as potent co-activators of ADP-dependent platelet aggregation or P-selectin expression, and are therefore suspected as additional risk factors for both arterial and venous thrombosis. There are clinical situations that have a known association with higher prolactin or leptin levels (pregnancy, obesity or anti-psychotic therapy) and increased risk of thromboembolic events. We compared the impact of both hormones on platelet activation in vitro and in vivo, indicating that prolactin has a stronger effect on platelet activation as leptin in vitro and in vivo. We have also demonstrated that prolactin levels are increased in so called idiopathic thrombosis, and that conversely, patients with prolactinoma have an increased frequency of thrombosis during the hyperprolactinemic state, in a retrospective analysis. Moreover, we have demonstrated increased prolactin values in stroke and myocardial infarction. Prospective studies have yet to be performed to give this theory its final confirmation. The involvement of hormonal factors in platelet aggregation and venous or arterial thrombosis may have important clinical implications such as for risk stratification of patients with venous and arterial thrombosis or new therapeutic options such as decreasing pro-coagulant hormone levels in certain risk situations.  相似文献   

2.
Hormones such as prolactin and leptin have recently been recognized as potent platelet aggregation co-activators, and have therefore been postulated as an additional risk factor for both arterial and venous thrombosis. Clinical situations exist that are known to be associated with higher leptin and/or prolactin levels (obesity, pregnancy, prolactinomas and anti-psychotic therapy respectively) and increased venous thrombosis or atherosclerosis risk. Therefore, we compared the impact of both hormones on platelet activation in vitro and in vivo. First, we investigated platelet aggregation and P-selectin expression after stimulation with 1,000 mU/l prolactin or 100 ng/ml leptin in five healthy volunteers in vitro. Prolactin revealed significant higher levels of P-selectin expression and platelet aggregation than leptin in all subjects. We also compared the correlation of prolactin and leptin values with the P-selection expression on platelets. Previously, we detected a significant correlation between prolactin values and ADP-stimulated P-selectin expression on platelets in pregnant women, patients with pituitary tumours, and patients on anti-psychotic therapy. In contrast, leptin did not correlate with P-selectin expression in all subject groups investigated. However, leptin correlated with body mass index in the subjects investigated. Our data indicate that prolactin has a stronger effect on platelet activation as leptin in vitro and in vivo. Moreover, our data suggest that the stronger effect of prolactin on ADP-stimulated platelet aggregation, compared to leptin, depends on higher stimulation of CD62p expression by prolactin.  相似文献   

3.
Quantitative determinations of platelet aggregation were made by a modified version of the Wu-Hoak-method in venous blood samples from ten healthy volunteers. It was demonstrated that the extent to which aggregates are formed depends on the rate of flow in the needle and on other methodical influences as well as on the platelet count. Accordingly, no definite conclusions concerning aggregation conditions in vivo can be drawn from the results obtained with venous blood samples.  相似文献   

4.
Summary Platelet microparticles (MPs) are membrane vesicles shed by platelets after activation, and carry antigens characteristic of intact platelets, such as glycoprotein (GP) IIb/IIIa, GPIb and P-selectin. Elevated platelet MPs have been observed in many disorders in which platelet activation is documented. Recently, platelet GPIb has been implicated in the mediation of platelet–leukocyte interaction via binding to its ligand Mac-1 on leukocyte. The role of GPIb for mediating adhesion-activation interactions between platelet MPs and leukocytes has not been clarified. In this study we investigate the role of GPIb in the interplay between platelet MPs and neutrophils. Platelet MPs were obtained from collagen-stimulated platelet-rich plasma (PRP). In a study model of neutrophil aggregation, platelet MPs can serve a bridge to support neutrophil aggregation under venous level shear stress, suggesting that platelet MPs may enhance leukocyte aggregation, which would bear clinical relevance in diseases where the platelet MPs are elevated. The level of aggregation can be reduced by GPIb blocking antibodies, AP1 and SZ2, but not by anti-CD18 mAb. The GPIb blocking antibodies also decreased platelet MP-mediated neutrophil activation, including β2 integrin expression, adherence-dependent superoxide release and platelet MP-mediated neutrophil adherence to immobilized fibrinogen. Our data provide the evidence for the involvement of GPIb–Mac-1 interaction in the cross-talk between platelet MPs and neutrophils.  相似文献   

5.
Cancer patients are at increased risk for thrombosis. Among the predisposing factors for the hemostatic imbalance, drugs have a definite role. Induction of thrombosis by drugs involves a variety of mechanisms: Enhancement of procoagulant activity, reduction in anticoagulants synthesis, stimulation of platelet aggregation and endothelial damage. L-asparaginase is associated with thrombotic events, mainly in the venous system. Supportive therapy with fresh frozen plasma is probably insufficient and heparin needs further evaluation. Venous thromboembolism has recently emerged following thalidomide use particularly in combination chemotherapy. The hematopoietic growth factors granulocyte colony-stimulating factor, macrophage-granulocyte colony-stimulating factor and erythropoietin have also been implicated in venous as well as in arterial thrombotic events. Numerous drugs are associated with thrombotic microangiopathy i.e., cyclosporine A, tacrolimus, cisplatin, bleomycin, gemcitabine. The clinical presentation, pathological mechanisms and therapeutic modalities are discussed.  相似文献   

6.
Increased platelet aggregability is regarded as being a sensitive indicator of the initiation of thrombotic processes. Platelet aggregation was analysed in blood taken from the common carotid artery before and 30 min after its ligation in 3 patients, as well as in the venous blood of 14 patients in the late postoperative period. No tendency towards increasing platelet aggregation was observed in either of the groups investigated.  相似文献   

7.
BACKGROUND: Although the association between mitral stenosis (MS) and increased coagulation activity is well recognized, it is unclear whether enhanced coagulation remains localized in the left atrium or whether this represents a systemic problem. To assess systemic coagulation parameters and changes in platelet aggregation, we measured fibrinogen levels and performed in vitro platelet function tests in plasma obtained from mitral stenotic patients' and from healthy control subjects' peripheral venous blood. METHODS: Sixteen newly diagnosed patients with rheumatic MS (Group P) and 16 healthy subjects (Group N) were enrolled in the study. Platelet-equalized plasma samples were evaluated to determine in vitro platelet function, using adenosine diphosphate (ADP), collagen and epinephrine in an automated aggregometer. In vitro platelet function tests in group N were performed twice, with and without plasma obtained from group P. RESULTS: There were no significant differences between the groups with respect to demographic variables. Peripheral venous fibrinogen levels in Group P were not significantly different from those in Group N. Adenosine diphosphate, epinephrine and collagen-induced platelet aggregation ratios were significantly higher in Group P than in Group N. When plasma obtained from Group P was added to Group N subjects' platelets, ADP and collagen-induced, but not epinephrine-induced, aggregation ratios were significantly increased compared to baseline levels in Group N. CONCLUSION: Platelet aggregation is increased in patients with MS, while fibrinogen levels remain similar to controls. We conclude that mitral stenotic patients exhibit increased systemic coagulation activity and that plasma extracted from these patients may contain some transferable factors that activate platelet aggregation.  相似文献   

8.
Superoxide anion is produced in human platelets predominantly by Nox2-dependent NADPH oxidases. In vitro experiments have shown that it might play a role in modulating platelet functions. The relationship between platelet superoxide production and aggregation remains poorly defined. Accordingly, we aimed to study superoxide production and aggregation in platelets from subjects with significant cardiovascular risk factors (hypertension, hypercholesterolemia, smoking and diabetes mellitus) and from control individuals. Moreover, we studied the effects of novel polyphenol-rich extracts of Aronia melanocarpa (chokeberry) berries on platelet function in vitro. Superoxide production was significantly increased in patients with cardiovascular risk profile when compared to controls, while platelet aggregation in response to either collagen or thrombin were borderline higher, and did not reach statistical significance. Interestingly, no relationship was observed between platelet aggregation ex vivo and platelet superoxide production in either of studied groups. No correlation was found between endothelial function (measured by FMD) and platelet aggregation ex vivo either. Polyphenol-rich extracts of A. melanocarpa berries caused a significant concentration dependent decrease in superoxide production only in patients with cardiovascular risk factors, while no effect was observed in the control group. A. melanocarpa extracts abolished the difference in superoxide production between risk factor patients and controls. A. melanocarpa extracts exerted significant concentration dependent anti-aggregatory effects in both studied groups, which indicated that these effects may be independent of it's ability to modulate superoxide production. The anti-aggregatory effects of chokeberry extracts were similar irrespective of aggregation inducing agent (collagen or thrombin). Moreover, they appear to be independent of platelet NO release as NOS inhibition by L-NAME did not lead to their abrogation.  相似文献   

9.
Factor XII deficiency has been postulated to be a risk factor for thrombosis suggesting that factor XII is an antithrombotic protein. The biochemical mechanism leading to this clinical observation is unknown. We have previously reported high molecular weight kininogen (HK) inhibition of thrombin-induced platelet aggregation by binding to the platelet glycoprotein (GP) Ib-IX-V complex. Although factor XII will bind to the intact platelet through GP Ibalpha (glycocalicin) without activation, we now report that factor XIIa (0. 37 microm), but not factor XII zymogen, is required for the inhibition of thrombin-induced platelet aggregation. Factor XIIa had no significant effect on SFLLRN-induced platelet aggregation. Moreover, an antibody to the thrombin site on protease-activated receptor-1 failed to block factor XII binding to platelets. Inhibition of thrombin-induced platelet aggregation was demonstrated with factor XIIa but not with factor XII zymogen or factor XIIf, indicating that the conformational exposure of the heavy chain following proteolytic activation is required for inhibition. However, inactivation of the catalytic activity of factor XIIa did not affect the inhibition of thrombin-induced platelet aggregation. Factor XII showed displacement of biotin-labeled HK (30 nm) binding to gel-filtered platelets and, at concentrations of 50 nm, was able to block 50% of the HK binding, suggesting involvement of the GP Ib complex. Antibodies to GP Ib and GP IX, which inhibited HK binding to platelets, did not block factor XII binding. However, using a biosensor, which monitors protein-protein interactions, both HK and factor XII bind to GP Ibalpha. Factor XII may serve to regulate thrombin binding to the GP Ib receptor by co-localizing with HK, to control the extent of platelet aggregation in vivo.  相似文献   

10.
Prolactin receptor signaling during platelet activation.   总被引:2,自引:0,他引:2  
Prolactin is a newly recognized platelet coactivator that functions through potentiation of ADP-induced platelet activation. However, the possible association between hyperprolactinemia and venous thromboembolism (VTE) has not been systematically investigated up to now; prolactin signaling mechanisms in platelets still need to be elucidated. In this study, plasma prolactin levels in healthy subjects and patients with VTE were determined, demonstrating that patients with VTE and no other congenital risk factors had significantly increased plasma prolactin levels. Moreover, prolactinoma patients demonstrated a higher incidence of VTE than the general population. To elucidate the molecular mechanisms for the development of venous thrombosis, prolactin receptor signaling during platelet activation was investigated with a focus on ADP-stimulated G-protein-regulated signaling pathways. The short isoform of prolactin receptors was detected on platelets. Signaling through this receptor, although not directly linked to Gq-proteins, substitutes for Gq-protein regulated signaling pathways involved in platelet activation. We identified protein kinase C, a well-established signaling molecule in platelet activation, as a target molecule for prolactin signaling pathways in human platelets. Our findings indicate that hyperprolactinemia may be an important novel risk factor for VTE, suggesting that its thrombogenic effect may be mediated through enhanced platelet reactivity. Revealing the molecular mechanisms of prolactin signaling will allow the design of new antithrombotic therapies.  相似文献   

11.
Thrombosis, like other cardiovascular diseases, has a strong genetic component, with largely unknown determinants. EMILIN2, Elastin Microfibril Interface Located Protein2, was identified as a candidate gene for thrombosis in mouse and human quantitative trait loci studies. EMILIN2 is expressed during cardiovascular development, on cardiac stem cells, and in heart tissue in animal models of heart disease. In humans, the EMILIN2 gene is located on the short arm of Chromosome 18, and patients with partial and complete deletion of this chromosome region have cardiac malformations. To understand the basis for the thrombotic risk associated with EMILIN2, EMILIN2 deficient mice were generated. The findings of this study indicate that EMILIN2 influences platelet aggregation induced by adenosine diphosphate, collagen, and thrombin with both EMILIN2-deficient platelets and EMILIN2-deficient plasma contributing to the impaired aggregation response. Purified EMILIN2 added to platelets accelerated platelet aggregation and reduced clotting time when added to EMILIN2-deficient mouse and human plasma. Carotid occlusion time was 2-fold longer in mice with platelet-specific EMILIN2 deficiency, but stability of the clot was reduced in mice with both global EMILIN2 deficiency and with platelet-specific EMILIN2 deficiency. In vitro clot retraction was markedly decreased in EMILIN2 deficient mice, indicating that platelet outside-in signaling was dependent on EMILIN2. EMILIN1 deficient mice and EMILIN2:EMILIN1 double deficient mice had suppressed platelet aggregation and delayed clot retraction similar to EMILIN2 mice, but EMILIN2 and EMILIN1 had opposing affects on clot retraction, suggesting that EMILIN1 may attenuate the effects of EMILIN2 on platelet aggregation and thrombosis. In conclusion, these studies identify multiple influences of EMILIN2 in pathophysiology and suggest that its role as a prothrombotic risk factor may arise from its effects on platelet aggregation and platelet mediated clot retraction.  相似文献   

12.
Hypercholesterolemia indirectly increases the risk for myocardial infarction by enhancing the ability of platelets to aggregate. Diets enriched with polyunsaturated fatty acids (PUFAs) have been shown to reduce the detrimental effects of cholesterol on platelet aggregation. This study investigated whether dietary hempseed, a rich source of PUFAs, inhibits platelet aggregation under normal and hypercholesterolemic conditions. Male New Zealand white rabbits were fed one of 6 dietary interventions: regular control diet (RG); control diet + 10% hempseed (HP); control diet + 10% partially delipidated hempseed (DHP); control diet + 0.5% cholesterol (OL); control diet + 0.5% cholesterol + 10% hempseed (OLHP); control diet + 5% coconut oil (CO). After 8 weeks, blood was collected to measure ADP- and collagen-induced platelet aggregation and plasma levels of fatty acids, cholesterol, and triglycerides. The hempseed-fed animals (HP and OLHP) displayed elevated plasma levels of PUFAs and a prominent enhancement in 18:3n-6 (gamma-linolenic acid, GLA) levels, a unique PUFA found in hempseed. The cholesterol-supplemented groups (OL and OLHP) had significantly elevated plasma levels of cholesterol and triglycerides, but platelet aggregation was significantly augmented only in the OL group. The addition of hempseed to this diet (OLHP) normalized aggregation. The direct addition of GLA to the OL platelet samples blocked the cholesterol-induced stimulation of platelet aggregation. The results of this study demonstrate that when hempseed is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels. This normalization is not due to a reduction in plasma cholesterol levels, but may be partly due to increased levels of plasma GLA.  相似文献   

13.
Prostaglandin synthesis has been reported to change with aspirin ingestion via cyclooxygenase enzyme inhibition and with marine oil supplementation via an increase in the metabolism of 3-series eicosanoids. This study investigated the effects of pharmacological manipulations of prostaglandin metabolism on forearm hemodynamics and blood pressure. The agents studied were omega-3 fatty acids and aspirin.In the omega-3 fatty acid study, two groups of normal volunteers (N=10/group) supplemented their diets with either marine oil capsules or placebo. Hemodynamic variables (Mercury-in-Silastic forearm plethysmography) were measured initially and weekly for 4 weeks. There were no significant differences between the two groups in blood pressure, forearm blood flow, venous capacitance, or forearm vascular resistance. Parallel changes occurred for forearm blood flow and venous capacitance. Six normal volunteers took daily dosages of aspirin, increasing from 162 to 6200 mg. Hemodynamic measurements, ADP-induced platelet aggregation, and serum salicylate levels were obtained daily. Maximu inhibition of platelet aggregation occurred after 162 mg. (serum salicylate = 17.7+/−6.4 mg/l). Though serum salicylate levels rose to 165.0+/−20.0 mg/l, no significant changes occurred in blood pressure or forearm blood flow. Even at aspirin levels 16- fold greater than those required to impair platelet aggregation, the changes in forearm vascular resistance were not found to be significant. These results suggest that under resting conditions in normotensive males, neither pharmacological inhibition nor stimulation of vascular prostaglandin metabolism alters to forearm vascular resistance or arterial blood pressure.  相似文献   

14.
It was established in dog experiments that aggregation activity of platelets and the rate of aggregation were higher in arterial than in venous blood, with the platelet content being identical. Antiaggregation activity of vascular walls of the arterial system. The data obtained indicate the presence of the arteriovenous difference of the function of the vascular-platelet hemostasis, which is of a role in the processes of regulating the state of blood aggregation in the body.  相似文献   

15.
The use of the lipid lowering agent niacin is hampered by a frequent flush response which is largely mediated by prostaglandin (PG) D(2). Therefore, concomitant administration of the D-type prostanoid (DP) receptor antagonist laropiprant has been proposed to be a useful approach in preventing niacin-induced flush. However, antagonizing PGD(2), which is a potent inhibitor of platelet aggregation, might pose the risk of atherothrombotic events in cardiovascular disease. In fact, we found that in vitro treatment of platelets with laropiprant prevented the inhibitory effects of PGD(2) on platelet function, i.e. platelet aggregation, Ca(2+) flux, P-selectin expression, activation of glycoprotein IIb/IIIa and thrombus formation. In contrast, laropiprant did not prevent the inhibitory effects of acetylsalicylic acid or niacin on thrombus formation. At higher concentrations, laropiprant by itself attenuated platelet activation induced by thromboxane (TP) and E-type prostanoid (EP)-3 receptor stimulation, as demonstrated in assays of platelet aggregation, Ca(2+) flux, P-selectin expression, and activation of glycoprotein IIb/IIIa. Inhibition of platelet function exerted by EP4 or I-type prostanoid (IP) receptors was not affected by laropiprant. These in vitro data suggest that niacin/laropiprant for the treatment of dyslipidemias might have a beneficial profile with respect to platelet function and thrombotic events in vascular disease.  相似文献   

16.
Evidence from recent epidemiological studies suggests a link between periodontal infections and increased risk of atherosclerosis and related cardiovascular and cerebrovascular events in human subjects. One of the major pathogens of periodontitis, Porphyromonas gingivalis, has the ability to aggregate human platelets in platelet-rich plasma (PRP). Mechanism of P. gingivalis-induced platelet aggregation in PRP was investigated. Proteinase inhibitors toward Arg-gingipain (Rgp) and Lys-gingipain (Kgp) did not suppress P. gingivalis-induced platelet aggregation in PRP, whereas the Rgp inhibitor markedly inhibited P. gingivalis-induced platelet aggregation using washed platelets. Mutant analysis revealed that P. gingivalis-induced platelet aggregation in PRP depended on Rgp-, Kgp- and haemagglutinin A (HagA)-encoding genes that intragenically coded for adhesins such as Hgp44. Hgp44 adhesin on the bacterial cell surface, which was processed by Rgp and Kgp proteinases, was essential for P. gingivalis-induced platelet aggregation in PRP. P. gingivalis cell-reactive IgG in plasma, and FcgammaRIIa receptor and to a lesser extent GPIbalpha receptor on platelets were found to be a prerequisite for P. gingivalis-induced platelet aggregation in PRP. These results reveal a novel mechanism of platelet aggregation by P. gingivalis.  相似文献   

17.
The receptor for ADP on the platelet membrane, which triggers exposure of fibrinogen-binding sites and platelet aggregation, has not yet been identified. Two enzymes with which ADP interacts on the platelet surface, an ecto-ATPase and nucleosidediphosphate kinase, have been proposed as possible receptors for ADP in ADP-induced platelet aggregation. In the present study, experiments were conducted with washed human platelets to examine if a relationship existed between platelet aggregation, fibrinogen binding and the enzymatic degradation of ADP. With 12 different platelet suspensions, a good correlation (P less than 0.01) was found between the extent of platelet aggregation and the amount of 125I-fibrinogen bound to platelets after ADP stimulation. No correlation was found between these parameters and the rate or extent of transformation of [14C]ADP to [14C]ATP or [14C]AMP. The binding of fibrinogen to platelets was inhibited in parallel with aggregation when ADP stimulation was impaired by the enzymatic degradation of ADP by the system creatine phosphate/creatine phosphokinase, or by the use of specific antagonists, such as ATP and AMP. These antagonists also influenced the enzymatic degradation of ADP. This effect occurred at lower concentrations of ATP or AMP than those required to inhibit ADP-induced platelet aggregation and fibrinogen binding. Our results demonstrate that ATP and AMP may be used as specific antagonists of the ADP-induced fibrinogen binding to platelets. They do not provide evidence to suggest that enzymes which metabolize ADP on the platelet surface are involved in the mechanism of ADP-induced platelet aggregation.  相似文献   

18.
Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.  相似文献   

19.
Many clinical trials have demonstrated the beneficial effects of soybean (Glycine max) on general cardiovascular health. Among a variety of soybeans, black soybean is known to display diverse biological activities superior to those of yellow and green soybeans, such as in antioxidant, anti-inflammatory and anticancer activities. However, few studies have been directed on the effect of black soybean on cardiovascular function. In this study, we aimed to investigate the effect of black soybean extract (BB) on platelet activation, a key contributor to thrombotic diseases. In freshly isolated human platelets, BB has shown potent inhibitory activity on collagen-induced platelet aggregation, while yellow soybean extract had marginal activity only. BB also attenuated serotonin secretion and P-selectin expression, which are important factors for the platelet–tissue interaction along with thromboxane A2 formation. These in vitro results were further confirmed in an ex vivo platelet aggregation measurement and in vivo venous thrombosis model where oral administration of BB reduced collagen-induced platelet aggregation and FeCl3-induced thrombus formation significantly. A potential active ingredient for antiplatelet effects of BB was isolated and identified to be adenosine through bioassay-directed fractionation and NMR and ESI-MS analyses. These results indicate that black soybean can be a novel dietary supplement for the prevention of cardiovascular risks and the improvement of blood circulation.  相似文献   

20.
A significant and considerable decrease in abnormally high platelet aggregation has been demonstrated after intramuscular administration of sodium adenosine triphosphate (ATP) to rats with depressed anticoagulant system (in aging rats at the age of 11–12 months) and to rats with experimental diabetes both preliminarily and at the background of progressing diabetes. The elimination of one of thrombotic risk factors (decreasing elevated platelet aggregation) points to possible antithrombotic activity of ATP under these experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号