首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified RNA polymerase, DNA polymerase III and unwinding protein of Escherichiacoli catalyze limited rifampicin sensitive fd or ØX 174 DNA-dependent DNA synthesis. A protein has been partially purified from E.coli which stimulates rifampicin sensitive dXMP incorporation in this system 20 to 30 fold. This protein also stimulates DNA synthesis catalyzed by DNA polymerases I and II; the stimulation occurs in reactions primed with natural and synthetic DNAs as well as RNA-DNA hybrids. The protein is not a product of the known dna genes. In contrast to the above system of purified enzymes, rifampicin sensitive dXMP incorporation in crude extracts of E.coli is specifically dependent on fd but not ØX 174 DNA. An additional factor has been isolated from extracts of E.coli which restores specificity to the purified rifampicin sensitive system by preventing ØX 174 DNA from serving as a template.  相似文献   

2.
3.
4.
5.
We have determined that Co2+, Ni2+ or Zn2+ may substitute for Mg2+ during DNA synthesis with E.coli DNA polymerase I, sea urchin nuclear DNA polymerase and the DNA polymerase from avian myeloblastosis virus (AMV). In addition, the frequency of non-complementary nucleotide incorporation using AMV DNA polymerase was increased using Co2+ or Mn2+ as the metal activator. These results suggest that the fidelity of DNA synthesis may be influenced by the metal activator used during catalysis.  相似文献   

6.
Inhibition of exonuclease V after infection of E. coli by bacteriophage T7   总被引:9,自引:0,他引:9  
Exonuclease V (recBC DNase) is inactivated in E. coli between 4 and 7 min after infection by T7. This process requires protein sythesis. The inactivation does not occur when T7 is deficient for its RNA polymerase and thus does not express the genes involved in DNA replication and phage maturation. Some implications of this new function of T7 are discussed with respect to the processes of infection and DNA replication.  相似文献   

7.
An enzyme, ribonucleotide polymerase, isolated from the yeast phase of a fungus, Histoplasma capsulatum has been found to stimulate the incorporation of dTMP in the reaction catalysed by DNA polymerase from H. capsulatum and E. coli. The stimulation is dependent on the amount of ribonucleotide polymerase added. The data indicate that protein-protein interaction is responsible for the increase in DNA synthesis. It is suggested that ribonucleotide polymerase may be involved in supplying short RNA primers for DNA polymerase.  相似文献   

8.
The inhibition by 1,10-phenanthroline of E. coli DNA polymerase I has recently been attributed to the formation in the assay mixtures of a unique and effective inhibitor, the 2:1 1,10-phenanthroline-cuprous ion complex (1). We have now found that this coordination complex is also an effective inhibitor of E. coli DNA dependent RNA polymerase, Micrococcus luteus DNA dependent DNA polymerase, and T-4 DNA dependent DNA polymerase. This conclusion is based either on the requirement of a thiol for 1,10-phenanthroline inhibition or on the reversal of 1,10-phenanthroline inhibition by the non-inhibitory cuprous ion specific chelating agent 2,9-dimethyl-1,10-phenanthroline. 2,2′,2″-Terpyridine is also very effective at relieving 1,10-phenanthroline inhibition. The reversal of 1,10-phenanthroline inhibition should be attempted before it is claimed that 1,10-phenanthroline inhibits any polymerases by coordinating a zinc ion at the active site.  相似文献   

9.
A heat-stable protein factor, capable of stimulating RNA synthesis by nuclear RNA polymerase II, was found in isolated nuclei of chicken myeloblastosis cells. It is adsorbed to a DEAE-Sephadex column used for RNA polymerase purification and then is eluted with 0.1 M ammonium sulfate. This factor appears to differ from previously reported eukaryotic RNA polymerase factors in its property of stimulating the activity of denatured (or single-stranded) DNA template. When heated, this factor contains no detectable endonuclease or exonuclease activity. The degree of stimulation is greater with chicken myeloblastosis RNA polymerase IIb than IIa and is most efficient when homologous DNA is used as template. This factor causes no stimulation of E. coli RNA polymerase.  相似文献   

10.
E. gracilis DNA dependent RNA polymerase I has been purified to homogeneity. α-amanitin, over the concentration range 0.05 to 200 μg/ml, does not affect its activity, consistent with its being classified as an RNA polymerase I. Based on a molecular weight of 624,000 daltons the enzyme contains 2.2 g atom of Zn but no Mn, Cu, Fe, as determined by microwave excitation emission spectrometry. Zinc is essential for activity since the chelating agent, 1,10-phenanthroline, inhibits enzymatic function but its non-chelating analogue, 4,7-phenanthroline is ineffective. Thus, like the RNA polymerase II, zinc is a catalytically essential component of E. gracilis RNA polymerase I (1).  相似文献   

11.
Excision of thymine dimers from specifically incised ultraviolet irradiated DNA by E. coli DNA polymerase I is stimulated by concurrent DNA synthesis. The 36,000 molecular-weight “small fragment” obtained by limited proteolysis of DNA polymerase I, which retains only the 5′ → 3′ exonuclease activity, also excises thymine dimers, but at one-tenth the rate of the intact enzyme. However, the rate of excision is increased by addition of the “large” 76,000-molecular weight fragment. With the further addition of the 4 deoxynucleoside triphosphates, permitting DNA synthesis to occur, excision approaches rates observed with the intact enzyme. The same result was obtained with a fragment of DNA polymerase I with 5′ → 3′ exonuclease activity that is present uniquely in polymerase I amber mutants.  相似文献   

12.
DNA-free minicells of Escherichia coli will not allow growth of phage T-7, nor is RNA synthesis stimulated by phage infection. Thus, these miniature cells seem not to contain in vivo RNA polymerase activity. However, DNA-dependent RNA polymerase activity can be unmasked in extracts with poly(dA-T) and Mn2+. This activity may represent a cytoplasmic pool of inactive RNA polymerase in normal cells.  相似文献   

13.
14.
Evidence for template-specific sites in DNA polymerases   总被引:3,自引:0,他引:3  
Using rabbit hemoglobin messenger RNA as template, E. coli polymerase I produces poly (dT), poly (dA)·(dT) and antimessenger DNA products. Mild heating of the enzyme causes a differential loss in activity as indicated by three rates of inactivation for the three types of synthesis. Heat inactivation studies have also been carried out with DNA polymerases from oncogenic RNA viruses and mammalian sources using various homopolymer-oligomer pairs as primertemplates. In general, for any given enzyme these synthetic primer-templates reveal different extents of inactivation of the polymerase. These findings may be interpreted to suggest a) that the binding of DNA polymerase to various primer-templates produces conformational changes in the enzyme which are dependent on the type of template bound, or b) that many, if not all, DNA polymerases have different subsites for different templates.  相似文献   

15.
DNA polymerase activities in cell-free lysates of unfertilized eggs, larvae and immature ovaries of Xenopuslaevis were compared to purified E.coli DNA polymerase I using several natural and synthetic templates. The templates were tested as the native and denatured forms of normal and DNase I treated molecules. Although the Xenopus polymerases tended to prefer DNase I treated Xenopus DNA over the other templates tested, so did the E.coli polymerase I. In general, the template preferences of the polymerases studied depended in complex ways on both the form and the species of origin of the template.  相似文献   

16.
The template activity of isolated rat liver nuclei for DNA synthesis assayed with E.coli DNA polymerase was found to be dependent upon the presence of Ca2+ or Mg2+ in the incubation medium. DNA was prepared from isolated nuclei subjected to conditions which activated the template and centrifuged in an alkaline sucrose gradient. The distribution profile showed that smaller fragments were formed, suggesting enhancement of endonucleolytic activity. When isolated nuclei were incubated with NAD to induce poly(adenosine diphosphate ribose) formation and were subjected to the activation conditions, the template for DNA synthesis remained unchanged. The distribution profile in an alkaline sucrose gradient of DNA prepared from these nuclei and control nuclei was identical. The present findings suggest that the template-activating system for DNA synthesis was blocked when isolated nuclei were treated with NAD invitro.  相似文献   

17.
The activity of E. coli DNA polymerase I decreases on treatment with γ-rays, methylnitrosourea or dimethyl sulphate. In the case of the first two agents the decrease in activity is accompanied by a decrease in the accuracy of the enzyme in an in vitro assay. There is no detectable change in the ratio of DNA polymerase activity to 3′→5′ exonuclease activity on treatment.  相似文献   

18.
19.
An analog of ATP has been synthesized which contains the fluorophore, 1-aminonapthalene-5-sulfonate attached via a γ-phosphoamidate bond. This analog is strongly fluorescent (quantum yield = 0.63) with an emission maximum at 460 nm; the excited state lifetime is 20 nsec. It is a substrate for DNA-dependent RNA polymerase of E. coli and wheat germ RNA polymerase II. It is also a substrate for E. coli valyl t-RNA synthetase, venom phosphodiesterase, and potato apyrase. Cleavage of the α-β phosphoryl bond as a result of RNA synthesis or by venom phosphodiesterase produces a 15 nm red shift in the fluorescence emission spectrum. This property should make this nucleotide useful for studies of the mechanisms of enzymatic reactions involving cleavage of the α-β phosphoryl bond.  相似文献   

20.
The modification of E. coli core RNA polymerase with 2-hydroxy-5-nitrobenzyl bromide (Koshland's Reagent) resulted in the benzylation of 6 out of 13 cysteines, and 10 out of 20 tryptophans in the polymerase, and occurred with an 8% decrease in its [θ]220. The modification resulted in a maximal inhibition of 60% of the RNA chains on both calf thymus and micrococcal DNA templates. γ-32P-ATP studies showed the inhibition occurred at RNA chain initiation. This study raises the possibility that the modified core polymerase may synthesize specific RNA(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号