首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of myocardial ischemia in syndrome X (chest pain, "ischemia-like" electrocardiogram changes, and normal coronary angiograms) is uncertain possibly because, when focally distributed, it may not cause contractile dysfunction or lactate production. We measured lipid hydroperoxides (ROOHs) and conjugated dienes (CDs), two sensitive, independent markers of ischemia-reperfusion oxidative stress, in paired aortic and great cardiac vein blood samples before and after pacing-induced tachycardia in nine patients with syndrome X. Diagnostic ischemic S-T segment changes during pacing were followed by a consistent increase in ROOH and CD levels in the great cardiac vein (from 4.83 +/- 1.18 micromol/l at baseline to 7.88 +/- 1.12 micromol/l and from 0.038 +/- 0.002 to 0.051 +/- 0.003 arbitrary units, respectively, P < 0.01). In controls, ROOH and CD levels did not change after pacing. The large postpacing cardiac release of lipid peroxidation products, consistently observed in all patients and similar to that previously observed after ischemia caused by percutaneous transluminal coronary angioplasty, is consistent with an ischemic origin of syndrome X.  相似文献   

2.
To verify the interaction between coronary pressure (CP) and blood flow (CBF) control, we studied nine candidates for angioplasty of an isolated lesion of the left anterior descending coronary artery [i.e. , percutaneous transluminal coronary angioplasty (PTCA)]. CBF (i.e., flow velocity x coronary cross-sectional area at the Doppler tip) and CP were monitored during washout of 2-5 mCi of (133)Xe after bolus injection into the left main artery before and after PTCA. Xe mean transit time (MTT) was calculated as the area under the time-activity curve, acquired by a gamma camera, divided by the dose obtained from a model fit of the Xe curve in the anterior wall. CBF response to intracoronary adenosine (2 mg) was also assessed. PTCA increased baseline CBF (from 14.5 +/- 9.4 to 20 +/- 8 ml/min, P < 0.01), coronary flow reserve (from 1.52 +/- 0.24 to 2.33 +/- 0.8, P < 0.01), and CP (from 64 +/- 9 to 100 +/- 10 mmHg, P < 0.05). MTT decreased from 89 +/- 32 to 70 +/- 19 s (P < 0.05) after PTCA; however, MTT and CBF changes were not correlated (r = -0.09, not significant). Inasmuch as MTT is the ratio of distribution volume to CBF, MTT x CBF was used as an index of perfused myocardial volume. Volume increased after PTCA from 23 +/- 18 to 56 +/- 30 ml. A direct correlation was observed between the percent increase in distal CP and percent increase in perfused volume (r = 0.91, P < 0.01). Thus low CP was not associated with exhaustion of flow reserve but, rather, with reduction of perfused myocardial volume. These data suggest that, in the presence of a severe coronary stenosis, derecruitment of vascular units occurs that is proportional to the decrease in driving pressure. Residual perfused units maintain a vasomotor tone, thus explaining the paradoxical persistence of coronary reserve.  相似文献   

3.
We studied the impact of systemic infusion of the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on coronary flow reserve (CFR) in patients with coronary artery disease (CAD). We have previously demonstrated that CFR to adenosine was significantly increased after systemic infusion of L-NMMA in normal volunteers but not in recently transplanted denervated hearts. At baseline, myocardial blood flow (MBF; ml x min(-1) x g(-1)) was measured at rest and during intravenous administration of adenosine (140 microg x kg(-1) x min(-1)) in 10 controls (47 +/- 5 yr) and 10 CAD patients (58 +/- 8 yr; P < 0.01 vs. controls) using positron emission tomography and (15)O-labeled water. Both MBF measurements were repeated during intravenous infusion of 10 mg/kg L-NMMA. CFR was calculated as the ratio of MBF during adenosine to MBF at rest. CFR was significantly higher in healthy volunteers than in CAD patients and increased significantly after L-NMMA in controls (4.00 +/- 1.10 to 6.15 +/- 1.35; P < 0.0001) and in patients, both in territories subtended by stenotic coronary arteries (>70% luminal diameter; 2.06 +/- 1.13 to 3.21 +/- 1.07; P < 0.01) and in remote segments (3.20 +/- 1.23 to 3.92 +/- 1.62; P < 0.05). In conclusion, CFR can be significantly increased in CAD by a systemic infusion of L-NMMA. Similarly to our previous findings in normal volunteers, this suggests that adenosine-induced hyperemia in CAD patients is constrained by a mechanism that can be relieved by systemic NOS inhibition with L-NMMA.  相似文献   

4.
Thromboxane A2 and cysteinyl leukotrienes are highly effective microvessel constrictors in normally perfused myocardium. Their release during acute coronary thrombosis might augment myocardial underperfusion. The constrictor action of these substances could be modified substantially, however, by concomitant myocardial ischemia. We compared the effects of the two eicosanoid constrictors in normally perfused and ischemic myocardium of 24 open-chest, pentobarbital-anesthetized pigs. Left anterior descending coronary flow was measured after intracoronary bolus injections of the stable thromboxane A2 analog U46619 (1-10 micrograms) or leukotriene D4 (LTD4, 1-10 micrograms). Each dose was given before and during myocardial ischemia induced by a snare adjusted to produce 63 +/- 2% decrease in coronary flow for 10 min. Marked dose-independent inhibition of eicosanoid-induced coronary flow decrease occurred during ischemia. With 10 micrograms U46619, coronary flow decrease in the unoccluded state (25 +/- 2 from 55 +/- 4 ml/min pretreatment baseline) was virtually eliminated during snare occlusion (1 +/- 1 from 21 +/- 3 ml/min pretreatment baseline, P less than 0.001). Similar results occurred with LTD4. Distal coronary pressure during ischemia indicated a lack of microvessel responsiveness to the eicosanoids rather than a buffering of resistance change by the snare. U46619 and LTD4 did induce transient, small reductions in regional shortening fraction during ischemia. Our data suggest that eicosanoid-induced constriction of myocardial resistance vessels is not a likely complication of acute coronary thrombosis. However, eicosanoids could depress residual contractility in moderately ischemic regions.  相似文献   

5.
Nine patients with coronary artery disease and normal left ventricular (LV) function underwent two episodes of dobutamine-induced ischemia to determine whether repeated episodes of ischemia lead to cumulative stunning. Positron emission tomography (PET) and oxygen 15-labeled H(2)O was used to assess myocardial blood flow (MBF) at baseline, peak stress, and after stress for each ischemic episode. Quantitative echocardiographic assessment of global ejection fraction (EF) and regional systolic function (SF) was performed at rest and regular intervals after dobutamine. SF was assessed for regions subtended by a coronary artery with a >70% diameter stenosis. Both EF and SF were more severely impaired 45 min after the second episode of stress compared with 45 min after the first (both P < 0.01), despite no difference in duration of the two dobutamine infusions or MBF at peak stress (1.72 vs. 1.69). After both episodes of ischemia, when LV function was impaired but subsequently recovered, MBF (1.15 +/- 0.39 and 1.20 +/- 0.43, respectively) was no different to baseline MBF (1.02 +/- 0.35), confirming that repeated episodes of dobutamine-induced ischemia lead to cumulative myocardial stunning.  相似文献   

6.
Coronary blood flow (CBF) and myocardial oxygen consumption (MVO(2)) are reduced in dogs with pacing-induced congestive heart failure (CHF), which suggests that energy metabolism is downregulated. Because nitric oxide (NO) can inhibit mitochondrial respiration, we examined the effects of NO inhibition on CBF and MVO(2) in dogs with CHF. CBF and MVO(2) were measured at rest and during treadmill exercise in 10 dogs with CHF produced by rapid ventricular pacing before and after inhibition of NO production with N(G)-nitro-L-arginine (L-NNA, 10 mg/kg iv). The development of CHF was accompanied by decreases in aortic and left ventricular (LV) systolic pressure and an increase in LV end-diastolic pressure (25 +/- 2 mmHg). L-NNA increased MVO(2) at rest (from 3.07 +/- 0.61 to 4.15 +/- 0.80 ml/min) and during exercise; this was accompanied by an increase in CBF at rest (from 31 +/- 2 to 40 +/- 4 ml/min) and during exercise (both P < 0.05). Although L-NNA significantly increased LV systolic pressure, similar increases in pressure produced by phenylephrine did not increase MVO(2). The findings suggest that NO exerts tonic inhibition on respiration in the failing heart.  相似文献   

7.
The effect of coronary artery bypass grafting (CABG) on absolute myocardial blood flow (MBF) has not been investigated previously. MBF (ml. min(-1). g(-1)) was measured at rest and during hyperemia (0.56 mg/kg iv dipyridamole) using H(2)(15)O and positron emission tomography in eight patients with three-vessel disease before surgery and 1 and 6 mo after full revascularization. Baseline MBF was 0.87 +/- 0.12 preoperatively and 1.04 +/- 0.14 and 0.95 +/- 0.13 at 1 and 6 mo after CABG, respectively (P < 0.05, 6 mo vs. preoperatively). Hyperemic MBF was 1.36 +/- 0.28 preoperatively and increased to 1.98 +/- 0.50 and 2.45 +/- 0.64 at 1 and 6 mo after CABG, respectively (P < 0.01, 6 mo vs. preoperatively). Coronary vasodilator reserve (hyperemic/baseline MBF) increased from 1.59 +/- 0.40 preoperatively to 1.93 +/- 0.13 and 2.57 +/- 0.49 at 1 and 6 mo, respectively (P < 0.05, 6 mo vs. preoperatively). Minimal (dipyridamole) coronary resistance (mmHg. min. g(-1). ml(-1)) fell progressively from 59.37 +/- 14.56 before surgery to a nadir of 35. 76 +/- 10.12 at 6 mo after CABG (P < 0.01 vs. preoperatively). The results of the present study confirm that CABG improves coronary vasodilator reserve progressively as a result of reduction in minimal coronary resistance. These data suggest persistent microvascular dysfunction that recovers slowly after surgery.  相似文献   

8.
Mental stress testing has been proposed as a noninvasive tool to evaluate endothelium-dependent coronary vasomotion. In patients with coronary artery disease, mental stress can induce myocardial ischemia. However, even the determinants of the physiological myocardial blood flow (MBF) response to mental stress are poorly understood. Twenty-four individuals (12 males/12 females, mean age 49 +/- 13 yr, range 31-74 yr) with a low likelihood for coronary artery disease were studied. Serum catecholamines, cardiac work, and MBF (measured quantitatively with N-13 ammonia and positron emission tomography) were assessed. During mental stress (arithmetic calculation) MBF increased significantly from 0.70 +/- 0.14 to 0.92 +/- 0.21 ml x min(-1) x g(-1) (P < 0.01). Mental stress caused significant increases (P < 0.01) in serum epinephrine (26 +/- 16 vs. 42 +/- 17 pg/ml), norepinephrine (272 +/- 139 vs. 322 +/- 136 pg/ml), and cardiac work [rate-pressure product (RPP) 8,011 +/- 1,884 vs. 10,416 +/- 2,711]. Stress-induced changes in cardiac work were correlated with changes in MBF (r = 0.72; P < 0.01). Multiple-regression analysis revealed stress-induced changes in the RPP as the only significant (P = 0.0001) predictor for the magnitude of mental stress-induced increases in MBF in healthy individuals. Data from this group of healthy individuals should prove useful to investigate coronary vasomotion in individuals at risk for or with documented coronary artery disease.  相似文献   

9.
The heterogeneity across the left ventricular wall is characterized by higher rates of oxygen consumption, systolic thickening fraction, myocardial perfusion, and lower energetic state in the subendocardial layers (ENDO). During dobutamine stimulation-induced demand ischemia, the transmural distribution of energy demand and metabolic markers of ischemia are not known. In this study, hemodynamics, transmural high-energy phosphate (HEP), 2-deoxyglucose-6-phosphate (2-DGP) levels, and myocardial blood flow (MBF) were determined under basal conditions, during dobutamine infusion (DOB: 20 microg x kg(-1) x min(-1) iv), and during coronary stenosis + DOB + 2-deoxyglucose (2-DG) infusion. DOB increased rate pressure products (RPP) and MBF significantly without affecting the subendocardial-to-subepicardial blood flow ratio (ENDO/EPI) or HEP levels. During coronary stenosis + DOB + 2-DG infusion, RPP, ischemic zone (IZ) MBF, and ENDO/EPI decreased significantly. The IZ ratio of creatine phosphate-to-ATP decreased significantly [2.30 +/- 0.14, 2.06 +/- 0.13, and 2.04 +/- 0.11 to 1.77 +/- 0.12, 1.70 +/- 0.11, and 1.72 +/- 0.12 for EPI, midmyocardial (MID), and ENDO, respectively], and 2-DGP accumulated in all layers, as evidenced by the 2-DGP/PCr (0.55 +/- 0.12, 0.52 +/- 0.10, and 0.37 +/- 0.08 for EPI, MID, and ENDO, respectively; P < 0.05, EPI > ENDO). In the IZ the wet weight-to-dry weight ratio was significantly increased compared with the normal zone (5.9 +/- 0.5 vs. 4.4 +/- 0.4; P < 0.05). Thus, in the stenotic perfused bed, during dobutamine-induced high cardiac work state, despite higher blood flow, the subepicardial layers showed the greater metabolic changes characterized by a shift toward higher carbohydrate metabolism, suggesting that a homeostatic response to high-cardiac work state is characterized by more glucose utilization in energy metabolism.  相似文献   

10.
The purpose of this study was to test if HBOC-201, a hemoglobin-based oxygen-carrying solution, can decrease infarct size (or Inf) during acute, severe myocardial ischemia and reperfusion. To test the impact of HBOC-201 on infarct size, ischemia was produced in 18 dogs by coronary stenosis to achieve 80-95% flow reduction for 195 min along with pacing 10% above the spontaneous heart rate, followed by 180 min of reperfusion. Animals were randomized to intravenous infusion of HBOC-201 (1 g/kg) (n=6), normal saline (NS) (n=6), or phenylephrine (Phe) (n=6, as a control for the increased blood pressure seen with HBOC-201), given 15 min after the start of ischemia. Amount of infarct was quantified as the ratio between area at risk (AAR) and Inf after Evans blue and 2,3,5-triphenyltetrazolium chloride staining. Hearts were divided into five layers from base (layer A) to apex (layer E) and photographed for digital image analysis of AAR and Inf. Regional myocardial function (RMF) was also measured after 60 min of ischemia and 15 min of reperfusion. Inf/AAR was significantly reduced after HBOC-201 therapy (4.4+/-2.2%) vs. NS (26.0+/-3.6%) and Phe (25.7+/-4.1%) (both, P<0.05). RMF after reperfusion was restored to 92% of baseline with HBOC-201 compared with 11% of baseline after NS (P<0.05) and 49% after Phe (P=not significant). HBOC-201 administration after induction of severe myocardial ischemia by acute coronary stenosis reduces infarct size and improves myocardial viability.  相似文献   

11.
Statin drugs can upregulate endothelial nitric oxide (NO) synthase (eNOS) in isolated endothelial cells independent of lipid-lowering effects. We investigated the effect of short-term simvastatin administration on coronary vascular eNOS and NO production in conscious dogs and canine tissues. Mongrel dogs were instrumented under general anesthesia to measure coronary blood flow (CBF). Simvastatin (20 mg. kg(-1). day(-1)) was administered orally for 2 wk; afterward, resting CBF was found to be higher compared with control (P < 0.05) and veratrine- (activator of reflex cholinergic NO-dependent coronary vasodilation) and ACh-mediated coronary vasodilation were enhanced (P < 0.05). Response to endothelium-independent vasodilators, adenosine and nitroglycerin, was not potentiated. After simvastatin administration, plasma nitrate and nitrite (NO(x)) levels increased from 5.22 +/- 1.2 to 7. 79 +/- 1.3 microM (P < 0.05); baseline and agonist-stimulated NO production in isolated coronary microvessels were augmented (P < 0.05); resting in vivo myocardial oxygen consumption (MVO(2)) decreased from 6.8 +/- 0.6 to 5.9 +/- 0.4 ml/min (P < 0.05); NO-dependent regulation of MVO(2) in response to NO agonists was augmented in isolated myocardial segments (P < 0.05); and eNOS protein increased 29% and eNOS mRNA decreased 50% in aortas and coronary vascular endothelium. Short-term administration of simvastatin in dogs increases coronary endothelial NO production to enhance NO-dependent coronary vasodilation and NO-mediated regulation of MVO(2).  相似文献   

12.
In vivo observations of microcirculatory behavior during autoregulation and adaptation to varying myocardial oxygen demand are scarce in the human coronary system. This study assessed microvascular reactions to controlled metabolic and pressure provocation [bicycle exercise and external counterpulsation (ECP)]. In 20 healthy subjects, quantitative myocardial contrast echocardiography and arterial applanation tonometry were performed during increasing ECP levels, as well as before and during bicycle exercise. Myocardial blood flow (MBF; ml·min(-1)·g(-1)), the relative blood volume (rBV; ml/ml), the coronary vascular resistance index (CVRI; dyn·s·cm(-5)/g), the pressure-work index (PWI), and the pressure-rate product (mmHg/min) were assessed. MBF remained unchanged during ECP (1.08 ± 0.44 at baseline to 0.92 ± 0.38 at high-level ECP). Bicycle exercise led to an increase in MBF from 1.03 ± 0.39 to 3.42 ± 1.11 (P < 0.001). The rBV remained unchanged during ECP, whereas it increased under exercise from 0.13 ± 0.033 to 0.22 ± 0.07 (P < 0.001). The CVRI showed a marked increase under ECP from 7.40 ± 3.38 to 11.05 ± 5.43 and significantly dropped under exercise from 7.40 ± 2.78 to 2.21 ± 0.87 (both P < 0.001). There was a significant correlation between PWI and MBF in the pooled exercise data (slope: +0.162). During ECP, the relationship remained similar (slope: +0.153). Whereas physical exercise decreases coronary vascular resistance and induces considerable functional capillary recruitment, diastolic pressure transients up to 140 mmHg trigger arteriolar vasoconstriction, keeping MBF and functional capillary density constant. Demand-supply matching was maintained over the entire ECP pressure range.  相似文献   

13.
This study examined whether increased superoxide (O(2)(-).) production contributes to coronary endothelial dysfunction and decreased coronary blood flow (CBF) in congestive heart failure (CHF). To test this hypothesis, the effects of the low-molecular-weight SOD mimetic M40401 on CBF and myocardial oxygen consumption (MVo(2)) were examined in dogs during normal conditions and after CHF was produced by 4 wk of rapid ventricular pacing. The development of CHF was associated with decreases of left ventricular (LV) systolic pressure, maximum first derivative of LV pressure, MVo(2), and CBF at rest and during treadmill exercise as well as endothelial dysfunction with impaired vasodilation in response to intracoronary acetylcholine. M40401 increased CBF (18 +/- 5%, P < 0.01) and MVo(2) (14 +/- 6%, P < 0.01) in CHF dogs and almost totally reversed the impaired CBF response to acetylcholine. M40401 had no effect on acetylcholine-induced coronary vasodilation, CBF, or MVo(2) in normal dogs. Western blot analysis demonstrated that extracellular SOD (EC-SOD) was significantly decreased in CHF hearts, whereas mitochondrial Mn-containing SOD was increased. Cytosolic Cu/Zn-containing SOD was unchanged. Both increased O(2)(-). production and decreased vascular O(2)(-). scavenging ability by EC-SOD could have contributed to endothelial dysfunction in the failing hearts.  相似文献   

14.
Acetaminophen was administered acutely at the onset of reperfusion after 20 min of low-flow, global myocardial ischemia in isolated, perfused guinea pig hearts (Langendorff) to evaluate its influence in the postischemia, reperfused myocardium. Similarly prepared hearts were treated with vehicle or with uric acid (another phenol for comparison). Functionally, acetaminophen-treated hearts (0.35 mM) achieved significantly greater recovery during reperfusion. For example, left ventricular developed pressures at 40 min reperfusion were 38 +/- 3, 27 +/- 3, and 20 +/- 2 in the presence of acetaminophen (P < 0.05, relative to the other two groups), vehicle, and uric acid, respectively. Coronary perfusion pressures and calculated coronary vascular resistances, in the acetaminophen-treated hearts, were significantly lower at the same time (e.g., coronary perfusion pressures in the three groups, respectively, were 40 +/- 2 [P < 0.05], 51 +/- 3, and 65 +/- 12 mm Hg). Under baseline, control conditions, creatine kinase ranged from 12-15 units/liter in the three groups. It increased to 35-40 units/liter (P < 0.05) during ischemia but was significantly reduced by acetaminophen during reperfusion (e.g., 5.3 +/- 0.8 units/liter at 40 min). Oxidant-mediated chemiluminescence in all three treatment groups during baseline conditions and ischemia was similar (i.e., approximately 1.5-2.0 min for peak luminescence to reach its half maximal value). It took significantly more time during reperfusion for the oxidation of luminol in the presence of acetaminophen (>20 min, P < 0.05) than in its absence (3-8 min in uric acid- and vehicle-treated hearts). These results suggest that administration of acetaminophen (0.35 mM), at the onset of reperfusion, provides anti-oxidant-mediated cardioprotection in the postischemia, reperfused myocardium.  相似文献   

15.
C-type natriuretic peptide (CNP) was recently found in the myocardium, but possible insights into differences between atrium and ventricle production are so far lacking. Our aim was to evaluate, in an experimental model of pacing-induced heart failure (HF), plasma and tissue levels of CNP and mRNA expression of the peptide and of its specific receptor, NPR-B. Cardiac tissue was collected from male adult minipigs without (control, n=5) and with pacing-induced HF (n=5). Blood samples were collected at baseline and after pacing (10 min, 1, 2, 3 weeks). CNP in plasma and in cardiac extracts was determined by a radioimmunoassay, while the expression of mRNA by real time PCR. Compared to control, plasma CNP was increased after 1 week of pacing stress (36.9+/-10.4 pg/ml vs.16.7+/-1.1, p=0.013, mean+/-S.E.M.). As to myocardial extract, at baseline, CNP was found in all cardiac chambers and its content was 10-fold higher in atria than in ventricles (RA: 13.7+/-1.9 pg/mg protein; LA: 8.7+/-3.8; RV: 1.07+/-0.33; LV: 0.93+/-0.17). At 3 weeks of pacing, myocardial levels of CNP in left ventricle were higher than in controls (15.8+/-9.9 pg/mg protein vs. 0.9+/-0.17, p=0.01). CNP gene expression was observed in controls and at 3 weeks of pacing. NPR-B gene expression was found in all cardiac regions analyzed, and a down-regulation was observed in ventricles after HF. The co-localization of the CNP system and NPR-B suggests a possible role of CNP in HF and may prompt novel therapeutical strategies.  相似文献   

16.
Exercise training increases coronary transport reserve in miniature swine   总被引:4,自引:0,他引:4  
Female yucatan miniature swine were trained on a treadmill (ET) or were cage confined (C) for 16-22 wk. The ET pigs had increased exercise tolerance, heart weight-to-body weight ratio, and skeletal muscle oxidative capacity. After anesthesia the left anterior descending coronary artery was cannulated and pump perfused with blood while aortic, central venous, and coronary perfusion pressures, electrocardiogram, heart rate, and coronary blood flow were monitored. Capillary permeability-surface area product (PS) for EDTA was determined with the single-injection indicator-diffusion method by use of an organ model based on the Sangren-Sheppard equations for capillary transport. Coronary blood flow (CBF) and PS were compared before and during maximal adenosine vasodilation with coronary perfusion pressures at 120 mmHg. Results indicate that there were no differences in base-line CBF or PS between C and ET groups. alpha-Receptor blockade with phentolamine and/or prazosin, before adenosine vasodilation, produced increases in PS in C pigs but had little effect in ET pigs. During maximal vasodilation with adenosine, ET pigs had greater CBF (447 +/- 24 vs. 366 +/- 27 ml.min-1.100 g-1) and greater PS (83 +/- 9 vs. 55 +/- 7 ml.min-1.100 g-1) than the C group. It is concluded that ET induces an increased coronary transport capacity in miniature swine that includes a 22% increase in blood flow capacity and a 51% increase in capillary exchange capacity.  相似文献   

17.
Impaired hyperemic myocardial blood flow (MBF) in hypertrophic cardiomyopathy (HCM), despite normal epicardial coronary arteries, results in microvascular dysfunction. The aim of the present study was to determine the relative contribution of extravascular compressive forces to microvascular dysfunction in HCM. Eighteen patients with symptomatic HCM and normal coronary arteries and 10 age-matched healthy volunteers were studied with PET to quantify resting and hyperemic MBF at a subendocardial and subepicardial level. In HCM patients, MRI was performed to determine left ventricular (LV) mass index (LVMI) and volumes, echocardiography to assess diastolic perfusion time, heart catheterization to measure LV outflow tract gradient (LVOTG) and LV pressures, and serum NH(2)-terminal pro-brain natriuretic peptide (NT-proBNP) as a biochemical marker of LV wall stress. Hyperemic MBF was blunted in HCM vs. controls (2.26 +/- 0.97 vs. 2.93 +/- 0.64 ml min(-1) g(-1), P < 0.05). In contrast to controls (1.38 +/- 0.15 to 1.25 +/- 0.19, P = not significant), the endocardial-to-epicardial MBF ratio decreased significantly in HCM during hyperemia (1.20 +/- 0.11 to 0.88 +/- 0.18, P < 0.01). This pattern was similar for hypertrophied septum and lateral wall. Hyperemic MBF was inversely correlated with LVOTG, NT-proBNP, left atrial volume index, and LVMI (all P < 0.01). Multivariate regression analysis, however, revealed that only LVMI and NT-proBNP were independently related to hyperemic MBF, with greater impact at the subendocardial myocardial layer. Hyperemic MBF is more severely impaired at the subendocardial level in HCM patients. The level of impairment is related to markers of increased hemodynamic LV loading conditions and LV mass. These observations suggest that, in addition to reduced capillary density caused by hypertrophy, extravascular compressive forces contribute to microvascular dysfunction in HCM patients.  相似文献   

18.
We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.  相似文献   

19.
Late preconditioning (PC) against myocardial stunning develops after coronary artery occlusion (CAO) at rest and subsequent reperfusion. We investigated whether late PC occurs after exercise-induced ischemia (high-flow ischemia) in dogs. A circumflex coronary artery stenosis (by using occluders) was set up before the onset of treadmill exercise in nine chronically instrumented dogs to suppress exercise-induced increase in mean coronary blood flow velocity (CBFV, Doppler) without simultaneously affecting left ventricular (LV) wall thickening (Wth) at rest. Two similar exercises were performed 24 h apart. On day 1, LV Wth was reduced by 84 +/- 5% (P < 0.01), and exercise-induced increases in transmural myocardial blood flow (MBF, fluorescent microspheres) in the ischemic zone were blunted. LV Wth was depressed throughout the first 10 h and returned to its baseline value after 24 h. On day 2, changes in LV Wth and MBF were similar as was the time course for LV Wth recovery, indicating lack of late PC. Also, CBFV responses to acetylcholine, nitroglycerin, and reactive hyperemia (20-s CAO) were not significantly different on days 1 and 2. Similar results were obtained in a subgroup of four additional dogs with more severe stenosis during exercise. Late PC against myocardial stunning was confirmed to occur in a model of 10-min CAO followed by coronary artery reperfusion (CAR) in another four dogs. Thus in contrast with CAO at rest followed by CAR, severe myocardial ischemia in coronary flow-limited exercising dogs does not induce late PC against myocardial stunning.  相似文献   

20.
The effect of synthetic parathyroid hormone (PTH)-related peptide [PTHrP(1-34)] on regional myocardial function was studied in 11 anesthetized pigs. Intracoronary infusion of PTHrP (cumulative dose: 14 +/- 1 microg) decreased coronary resistance to 33 +/- 2% of baseline (P < 0.05) and regional myocardial function to 90 +/- 3% of baseline (not significant). Ischemia-reperfusion alters the activity of several kinases and therefore possibly the myocardial effects of PTHrP. In stunned myocardium, induced by 20-min ischemia and 30-min reperfusion, the dose of PTHrP reducing coronary resistance to a minimum of 29 +/- 2% was decreased to 8 +/- 2 microg (P < 0.05). Regional myocardial function was no longer decreased but increased to 132 +/- 9% (P < 0.05). The increase in regional myocardial function during PTHrP was inversely related to baseline function at 30-min reperfusion in vivo (r = 0.9) as well as in myocytes isolated from stunned pig hearts (r = 0.7). In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, blockade of endogenous PTHrP by d-Trp(12)-Tyr(34)-PTH(7-34) attenuated the recovery of left ventricular developed pressure by 30 +/- 14% (P < 0.05). Thus endogenous and exogenous PTHrP impact on the function of stunned myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号