首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In the urinary bladder, contractions of the detrusor muscle and urine voiding are induced by the neurotransmitters ACh and ATP, released from parasympathetic nerves. Activation of K(+) channels, in particular the large-conductance Ca(2+)-activated K(+) (BK) channels, opposes increases in excitability and contractility of urinary bladder smooth muscle (UBSM). We have shown that deleting the gene mSlo1 in mice (Slo(-/-)), encoding the BK channel, leads to enhanced nerve-mediated and neurotransmitter-dependent contractility of UBSM (38). Here, we examine the location of the BK channel in urinary bladder strips from mouse. Immunohistochemical analysis revealed that the channel is expressed in UBSM but not in nerves that innervate the smooth muscle. The relationship between electrical field stimulation and force generation of the cholinergic and purinergic pathways was examined by applying blockers of the respective receptors in UBSM strips from wild-type and from Slo(-/-) (knockout) mice. In wild-type strips, the stimulation frequency required to obtain a half-maximal force was significantly lower for the purinergic (7.2 +/- 0.3 Hz) than the cholinergic pathway (19.1 +/- 1.5 Hz), whereas the maximum force was similar. Blocking BK channels with iberiotoxin or ablation of the Slo gene increased cholinergic- and purinergic-mediated force at low frequencies, i.e., significantly decreased the frequency for a half-maximal force. Our results indicate that the BK channel has a very significant role in reducing both cholinergic- and purinergic-induced contractility and suggest that alterations in BK channel expression or function could contribute to pathologies such as overactive detrusor.  相似文献   

2.
Small-conductance Ca(2+)-activated K(+) (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing beta-galactosidase (beta-gal) under the direction of the SK2 promoter (SK2 beta-gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2(-/-) mice) to assess SK2 function. In SK2 beta-gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2(+/+)) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC(50) = 0.16 nM), whereas phasic contractions of SK2(-/-) strips were unaffected. Nerve-mediated contractions of SK2(+/+) UBSM strips were also increased by apamin, an effect absent in SK2(-/-) strips. Apamin increased the sensitivity of SK2(+/+) UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 +/- 4 Hz, n = 6; apamin, 12 +/- 2 Hz, n = 7; P < 0.05). In contrast, the sensitivity of SK2(-/-) UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility.  相似文献   

3.
This study examines the roles of voltage-dependent Ca(2+) channels (VDCC), ryanodine receptors (RyRs), large-conductance Ca(2+)-activated K(+) (BK) channels, and small-conductance Ca(2+)-activated K(+) (SK) channels in the regulation of phasic contractions of guinea pig urinary bladder smooth muscle (UBSM). Nisoldipine (100 nM), a dihydropyridine inhibitor of VDCC, abolished spontaneous UBSM contractions. Ryanodine (10 microM) increased contraction frequency and thereby integrated force and, in the presence of the SK blocker apamin, had a greater effect on integrated force than ryanodine alone. Blocking BK (iberiotoxin, 100 nM) or SK (apamin, 100 nM) channels increased contraction amplitude and duration but decreased frequency. The contractile response to iberiotoxin was more pronounced than to apamin. The increases in contraction amplitude and duration to apamin were substantially augmented with ryanodine pretreatment. These results indicate that BK and SK channels have prominent roles as negative feedback elements to limit UBSM contraction amplitude and duration. RyRs also appear to play a significant role as a negative feedback regulator of contraction frequency and duration, and this role is influenced by the activity of SK channels.  相似文献   

4.
5.
We investigated the role of large-conductance Ca(2+)-activated K(+) (BK) channels in beta3-adrenoceptor (beta3-AR)-induced relaxation in rat urinary bladder smooth muscle (UBSM). BRL 37344, a specific beta3-AR agonist, inhibits spontaneous contractions of isolated UBSM strips. SR59230A, a specific beta3-AR antagonist, and H89, a PKA inhibitor, reduced the inhibitory effect of BRL 37344. Iberiotoxin, a specific BK channel inhibitor, shifts the BRL 37344 concentration response curves for contraction amplitude, net muscle force, and tone to the right. Freshly dispersed UBSM cells and the perforated mode of the patch-clamp technique were used to determine further the role of beta3-AR stimulation by BRL 37344 on BK channel activity. BRL 37344 increased spontaneous, transient, outward BK current (STOC) frequency by 46.0 +/- 20.1%. In whole cell mode at a holding potential of V(h) = 0 mV, the single BK channel amplitude was 5.17 +/- 0.28 pA, whereas in the presence of BRL 37344, it was 5.55 +/- 0.41 pA. The BK channel open probability was also unchanged. In the presence of ryanodine and nifedipine, the current-voltage relationship in response to depolarization steps in the presence and absence of BRL 37344 was identical. In current-clamp mode, BRL 37344 caused membrane potential hyperpolarization from -26.1 +/- 2.1 mV (control) to -29.0 +/- 2.2 mV. The BRL 37344-induced hyperpolarization was eliminated by application of iberiotoxin, tetraethylammonium or ryanodine. The data indicate that stimulation of beta3-AR relaxes rat UBSM by increasing the BK channel STOC frequency, which causes membrane hyperpolarization and thus relaxation.  相似文献   

6.
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were to characterize Ca(2+) sparks and BK(Ca) currents and to determine the voltage dependence of the coupling of RyRs (Ca(2+) sparks) to BK(Ca) channels in UBSM. Ca(2+) sparks in UBSM had properties similar to those described in arterial smooth muscle. Most Ca(2+) sparks caused BK(Ca) currents at all voltages tested, consistent with the BK(Ca) channels sensing approximately 10 microM Ca(2+). Membrane potential depolarization from -50 to -20 mV increased Ca(2+) spark and BK(Ca) current frequency threefold. However, membrane depolarization over this range had a differential effect on spark and current amplitude, with Ca(2+) spark amplitude increasing by only 30% and BK(Ca) current amplitude increasing 16-fold. A major component of the amplitude modulation of spark-activated BK(Ca) current was quantitatively explained by the known voltage dependence of the Ca(2+) sensitivity of BK(Ca) channels. We, therefore, propose that membrane potential, or any other agent that modulates the Ca(2+) sensitivity of BK(Ca) channels, profoundly alters the coupling strength of Ca(2+) sparks to BK(Ca) channels.  相似文献   

7.
The muscularis mucosae, a type of smooth muscle located between the urothelium and the urinary bladder detrusor, has been described, although its properties and role in bladder function have not been characterized. Here, using mucosal tissue strips isolated from guinea pig urinary bladders, we identified spontaneous phasic contractions (SPCs) that appear to originate in the muscularis mucosae. This smooth muscle layer exhibited Ca(2+) waves and flashes, but localized Ca(2+) events (Ca(2+) sparks, purinergic receptor-mediated transients) were not detected. Ca(2+) flashes, often in bursts, occurred with a frequency (~5.7/min) similar to that of SPCs (~4/min), suggesting that SPCs are triggered by bursts of Ca(2+) flashes. The force generated by a single mucosal SPC represented the maximal force of the strip, whereas a single detrusor SPC was ~3% of maximal force of the detrusor strip. Electrical field stimulation (0.5-50 Hz) evoked force transients in isolated detrusor and mucosal strips. Inhibition of cholinergic receptors significantly decreased force in detrusor and mucosal strips (at higher frequencies). Concurrent inhibition of purinergic and cholinergic receptors nearly abolished evoked responses in detrusor and mucosae. Mucosal SPCs were unaffected by blocking small-conductance Ca(2+)-activated K(+) (SK) channels with apamin and were unchanged by blocking large-conductance Ca(2+)-activated K(+) (BK) channels with iberiotoxin (IbTX), indicating that SK and BK channels play a much smaller role in regulating muscularis mucosae SPCs than they do in regulating detrusor SPCs. Consistent with this, BK channel current density in myocytes from muscularis mucosae was ~20% of that in detrusor myocytes. These findings indicate that the muscularis mucosae in guinea pig represents a second smooth muscle compartment that is physiologically and pharmacologically distinct from the detrusor and may contribute to the overall contractile properties of the urinary bladder.  相似文献   

8.
Overactive bladder syndrome is frequently associated with increased detrusor smooth muscle (DSM) contractility. We tested the hypothesis that pharmacological activation of the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel with NS-1619, a selective BK channel opener, reduces the excitability and contractility of human DSM. We used the amphotericin-perforated whole cell patch-clamp technique on freshly isolated human DSM cells, live-cell Ca(2+) imaging, and isometric DSM tension recordings of human DSM strips obtained from open bladder surgeries. NS-1619 (30 μM) significantly increased the amplitude of the voltage step-induced whole cell BK currents, and this effect was abolished by pretreatment with 200 nM iberiotoxin (IBTX), a selective BK channel inhibitor. In current-clamp mode, NS-1619 (30 μM) significantly hyperpolarized the resting membrane potential, and the hyperpolarization was reversed by IBTX (200 nM). NS-1619 (30 μM) significantly decreased the intracellular Ca(2+) level in isolated human DSM cells. BK channel activation with NS-1619 (30 μM) significantly inhibited the amplitude, muscle force, frequency, duration, and tone of the spontaneous phasic and pharmacologically induced DSM contractions from human DSM isolated strips. IBTX (200 nM) suppressed the inhibitory effects of NS-1619 on spontaneous contractions. The amplitude of electrical field stimulation (0.5-50 Hz)-induced contractions was significantly reduced by NS-1619 (30 μM). Our data suggest that pharmacological activation of BK channels could represent a novel treatment option to control bladder dysfunction in humans.  相似文献   

9.
Urinary bladder smooth muscle (UBSM) elicits depolarizing action potentials, which underlie contractile events of the urinary bladder. The resting membrane potential of UBSM is approximately -40 mV and is critical for action potential generation, with hyperpolarization reducing action potential frequency. We hypothesized that a tonic, depolarizing conductance was present in UBSM, functioning to maintain the membrane potential significantly positive to the equilibrium potential for K(+) (E(K); -85 mV) and thereby facilitate action potentials. Under conditions eliminating the contribution of K(+) and voltage-dependent Ca(2+) channels, and with a clear separation of cation- and Cl(-)-selective conductances, we identified a novel background conductance (I(cat)) in mouse UBSM cells. I(cat) was mediated predominantly by the influx of Na(+), although a small inward Ca(2+) current was detectable with Ca(2+) as the sole cation in the bathing solution. Extracellular Ca(2+), Mg(2+), and Gd(3+) blocked I(cat) in a voltage-dependent manner, with K(i) values at -40 mV of 115, 133, and 1.3 microM, respectively. Although UBSM I(cat) is extensively blocked by physiological extracellular Ca(2+) and Mg(2+), a tonic, depolarizing I(cat) was detected at -40 mV. In addition, inhibition of I(cat) demonstrated a hyperpolarization of the UBSM membrane potential and decreased the amplitude of phasic contractions of isolated UBSM strips. We suggest that I(cat) contributes tonically to the depolarization of the UBSM resting membrane potential, facilitating action potential generation and thereby a maintenance of urinary bladder tone.  相似文献   

10.
Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors. Quantitative PCR experiments revealed that SK3 channel mRNA expression in isolated DSM single cells was ~12- to 44-fold higher than SK1, SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages for SK3 channels but not SK1, SK2, and IK channels. Western blot and immunohistochemistry analysis further confirmed protein expression for the SK3 channel and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 μM), a selective SK channel inhibitor, significantly increased the spontaneous phasic contraction amplitude, muscle force integral, phasic contraction duration, and muscle tone of human DSM isolated strips. Apamin (1 μM) also increased the amplitude of human DSM electrical field stimulation (EFS)-induced contractions. However, TRAM-34 (1 μM), a selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced DSM contractions suggesting a lack of IK channel functional role in human DSM. In summary, our molecular and functional studies revealed that the SK, particularly the SK3 subtype, but not IK channels are expressed and regulate the spontaneous and nerve-evoked contractions in human DSM.  相似文献   

11.
BK large conductance voltage- and calcium-activated potassium channels respond to elevations in intracellular calcium and membrane potential depolarization, braking excitability of smooth muscle. BK channels are thought to have a particularly prominent role in urinary bladder smooth muscle function and therefore are candidate targets for overactive bladder therapy. To address the role of the BK channel in urinary bladder function, the gene mSlo1 for the pore-forming subunit of the BK channel was deleted. Slo(-/-) mice were viable but exhibited moderate ataxia. Urinary bladder smooth muscle cells of Slo(-/-) mice lacked calcium- and voltage-activated BK currents, whereas local calcium transients ("calcium sparks") and voltage-dependent potassium currents were unaffected. In the absence of BK channels, urinary bladder spontaneous and nerve-evoked contractions were greatly enhanced. Consistent with increased urinary bladder contractility caused by the absence of BK currents, Slo(-/-) mice demonstrate a marked elevation in urination frequency. These results reveal a central role for BK channels in urinary bladder function and indicate that BK channel dysfunction leads to overactive bladder and urinary incontinence.  相似文献   

12.
Spontaneous bladder contractions (SBCs) in the neonatal rat urinary bladder change from a high-amplitude, low-frequency pattern to a low-amplitude, high-frequency pattern during the first 6 wk of life. Understanding the mechanism of this developmental change may provide insights into the causes of bladder overactivity in adults. In vitro whole bladder preparations from Sprague-Dawley rats were used to study the modulation of SBCs by calcium-activated potassium channels (K(Ca)) and electrical field stimulation from 3 days to 6 wk of life. SBCs in 3-day-old bladders were unmasked by treatment with iberiotoxin (100 nM), an inhibitor of large conductance K(Ca) (BK) channels, or apamin (100 nM), an inhibitor of small conductance K(Ca) (SK) channels. Iberiotoxin significantly increased the magnitude of SBCs at 2-3 wk, whereas apamin was only effective at 6 wk. In 1-2 wk bladders, exposure to room temperature Krebs solution decreased SBCs. This decrease was reversed by activating intramural nerves with electrical field stimulation. The effect of electrical field stimulation was inhibited by atropine (1 microM), suramin (10 microM), or pretreatment with tetrodotoxin (1 microM) but was not reversed by tetrodotoxin applied after electrical field stimulation. BK-alpha mRNA increased threefold, and BK-alpha protein increased fivefold from 3 days to 6 wk. These data suggest that BK channels play an important role in the regulation of SBCs in the neonatal bladder and that both increased BK channel activity, as well as changes in smooth muscle sensitivity to locally released neurotransmitters contribute to the downregulation of SBCs during early postnatal development.  相似文献   

13.
Activation of afferent nerves during urinary bladder (UB) filling conveys the sensation of UB fullness to the central nervous system (CNS). Although this sensory outflow is presumed to reflect graded increases in pressure associated with filling, UBs also exhibit nonvoiding, transient contractions (TCs) that cause small, rapid increases in intravesical pressure. Here, using an ex vivo mouse bladder preparation, we explored the relative contributions of filling pressure and TC-induced pressure transients to sensory nerve stimulation. Continuous UB filling caused an increase in afferent nerve activity composed of a graded increase in baseline activity and activity associated with increases in intravesical pressure produced by TCs. For each ∼4-mmHg pressure increase, filling pressure increased baseline afferent activity by ∼60 action potentials per second. In contrast, a similar pressure elevation induced by a TC evoked an ∼10-fold greater increase in afferent activity. Filling pressure did not affect TC frequency but did increase the TC rate of rise, reflecting a change in the length-tension relationship of detrusor smooth muscle. The frequency of afferent bursts depended on the TC rate of rise and peaked before maximum pressure. Inhibition of small- and large-conductance Ca2+-activated K+ (SK and BK) channels increased TC amplitude and afferent nerve activity. After inhibiting detrusor muscle contractility, simulating the waveform of a TC by gently compressing the bladder evoked similar increases in afferent activity. Notably, afferent activity elicited by simulated TCs was augmented by SK channel inhibition. Our results show that afferent nerve activity evoked by TCs represents the majority of afferent outflow conveyed to the CNS during UB filling and suggest that the maximum TC rate of rise corresponds to an optimal length-tension relationship for efficient UB contraction. Furthermore, our findings implicate SK channels in controlling the gain of sensory outflow independent of UB contractility.  相似文献   

14.
The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is expressed in many smooth muscle types, but its role in human detrusor smooth muscle (DSM) is unclear. With a multidisciplinary approach spanning channel molecules, single-channel activity, freshly isolated human DSM cells, intact DSM preparations, and the BK channel specific inhibitor iberiotoxin, we elucidated human DSM BK channel function and regulation. Native human DSM tissues were obtained during open surgeries from patients with no preoperative history of overactive bladder. RT-PCR experiments on single human DSM cells showed mRNA expression of BK channel α-, β(1)-, and β(4)-subunits. Western blot and immunocytochemistry confirmed BK channel α, β(1), and β(4) protein expression. Native human BK channel properties were described using the perforated whole cell configuration of the patch-clamp technique. In freshly isolated human DSM cells, BK channel blockade with iberiotoxin inhibited a significant portion of the total voltage step-induced whole cell K(+) current. From single BK channel recordings, human BK channel conductance was calculated to be 136 pS. Voltage-dependent iberiotoxin- and ryanodine-sensitive transient BK currents were identified in human DSM cells. In current-clamp mode, iberiotoxin inhibited the hyperpolarizing membrane potential transients and depolarized the cell resting membrane potential. Isometric DSM tension recordings revealed that BK channels principally control the contractions of isolated human DSM strips. Collectively, our results indicate that BK channels are fundamental regulators of DSM excitability and contractility and may represent new targets for pharmacological or genetic control of urinary bladder function in humans.  相似文献   

15.
Detrusor smooth muscle (DSM) exhibits increased spontaneous phasic contractions under pathophysiological conditions such as detrusor overactivity (DO). Our previous studies showed that activation of cAMP signaling pathways reduces DSM contractility by increasing the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel activity. Here, we tested the hypothesis whether inhibition of phosphodiesterases (PDEs) can reduce guinea pig DSM excitability and contractility by increasing BK channel activity. Utilizing isometric tension recordings of DSM isolated strips and the perforated patch-clamp technique on freshly isolated DSM cells, we examined the mechanism of DSM relaxation induced by PDE inhibition. Inhibition of PDEs by 3-isobutyl-1-methylxanthine (IBMX), a nonselective PDE inhibitor, significantly reduced DSM spontaneous and carbachol-induced contraction amplitude, frequency, duration, muscle force integral, and tone in a concentration-dependent manner. IBMX significantly reduced electrical field stimulation-induced contractions of DSM strips. Blocking BK channels with paxilline diminished the inhibitory effects of IBMX on DSM contractility, indicating a role for BK channels in DSM relaxation mediated by PDE inhibition. IBMX increased the transient BK currents (TBKCs) frequency by ~3-fold without affecting the TBKCs amplitude. IBMX increased the frequency of the spontaneous transient hyperpolarizations by ~2-fold and hyperpolarized the DSM cell resting membrane potential by ~6 mV. Blocking the BK channels with paxilline abolished the IBMX hyperpolarizing effects. Under conditions of blocked Ca(2+) sources for BK channel activation, IBMX did not affect the depolarization-induced steady-state whole cell BK currents. Our data reveal that PDE inhibition with IBMX relaxes guinea pig DSM via TBKCs activation and subsequent DSM cell membrane hyperpolarization.  相似文献   

16.
Activation of ATP-sensitive potassium (K(ATP)) channels can regulate smooth muscle function through membrane potential hyperpolarization. A critical issue in understanding the role of K(ATP) channels is the relationship between channel activation and the effect on tissue function. Here, we explored this relationship in urinary bladder smooth muscle (UBSM) from the detrusor by activating K(ATP) channels with the synthetic compounds N-(4-benzoylphenyl)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamide (ZD-6169) and levcromakalim. The effects of ZD-6169 and levcromakalim on K(ATP) channel currents in isolated UBSM cells, on action potentials, and on related phasic contractions of isolated UBSM strips were examined. ZD-6169 and levcromakalim at 1.02 and 2.63 microM, respectively, caused half-maximal activation (K1/2) of K(ATP) currents in single UBSM cells (see Heppner TJ, Bonev A, Li JH, Kau ST, and Nelson MT. Pharmacology 53: 170-179, 1996). In contrast, much lower concentrations (K(1/2) = 47 nM for ZD-6169 and K1/2 = 38 nM for levcromakalim) caused inhibition of action potentials and phasic contractions of UBSM. The results suggest that activation of <1% of K(ATP) channels is sufficient to inhibit significantly action potentials and the related phasic contractions.  相似文献   

17.
Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of estrogens. This study provides an electrophysiological investigation into the role of UBSM BK channels as direct targets for 17β-estradiol, the principle estrogen in human circulation. Single BK channel recordings on inside-out excised membrane patches and perforated whole cell patch-clamp were applied in combination with the BK channel selective inhibitor paxilline to elucidate the mechanism of regulation of BK channel activity by 17β-estradiol in freshly-isolated guinea pig UBSM cells. 17β-Estradiol (100 nM) significantly increased the amplitude of depolarization-induced whole cell steady-state BK currents and the frequency of spontaneous transient BK currents in freshly-isolated UBSM cells. The increase in whole cell BK currents by 17β-estradiol was eliminated upon blocking BK channels with paxilline. 17β-Estradiol (100 nM) significantly increased (~3-fold) the single BK channel open probability, indicating direct 17β-estradiol-BK channel interactions. 17β-Estradiol (100 nM) caused a significant hyperpolarization of the membrane potential of UBSM cells, and this hyperpolarization was reversed by blocking the BK channels with paxilline. 17β-Estradiol (100 nM) had no effects on L-type voltage-gated Ca2+ channel currents recorded under perforated patch-clamp conditions. This study reveals a new regulatory mechanism in the urinary bladder whereby BK channels are directly activated by 17β-estradiol to reduce UBSM cell excitability.  相似文献   

18.
Somogyi GT  de Groat WC 《Life sciences》1999,64(6-7):411-418
Presynaptic M1 muscarinic receptors on parasympathetic nerve terminals in rat urinary bladder strips are involved in an autofacilitatory mechanism that markedly enhances acetylcholine release during continuous electrical field stimulation. The facilitatory muscarinic mechanism is dependent upon a PKC mediated second messenger pathway and influx of extracellular Ca2+ into the parasympathetic nerve terminals via L and N-type Ca2+ channels. Prejunctional muscarinic facilitation has also been detected in human bladders. The muscarinic facilitatory mechanism is upregulated in hyperactive bladders from chronic spinal cord transected rats; and the facilitation in these preparations is primarily mediated by M3 muscarinic receptors. Presynaptic muscarinic receptors represent a new target for pharmacological treatment of bladder hyperactivity. If presynaptic facilitation is restricted to the bladder and not present in other tissues then drugs acting at this site might be expected to exhibit uroselectivity.  相似文献   

19.
Intracellular recordings were taken from the smooth muscle of the guinea pig trachea, and the effects of intrinsic nerve stimulation were examined. Approximately 50% of the cells had stable resting membrane potentials of -50 +/- 1 mV. The remaining cells displayed spontaneous oscillations in membrane potential, which were abolished either by blocking voltage-dependent Ca(2+) channels with nifedipine or by depleting intracellular Ca(2+) stores with ryanodine. In quiescent cells, stimulation with a single impulse evoked an excitatory junction potential (EJP). In 30% of these cells, trains of stimuli evoked an EJP that was followed by oscillations in membrane potential. Transmural nerve stimulation caused an increase in the frequency of spontaneous oscillations. All responses were abolished by the muscarinic-receptor antagonist hyoscine (1 microM). In quiescent cells, nifedipine (1 microM) reduced EJPs by 30%, whereas ryanodine (10 microM) reduced EJPs by 93%. These results suggest that both the release of Ca(2+) from intracellular stores and the influx of Ca(2+) through voltage-dependent Ca(2+) channels are important determinants of spontaneous and nerve-evoked electrical activity of guinea pig tracheal smooth muscle.  相似文献   

20.
Erectile dysfunction (ED) can be elicited by a variety of pathogenic factors, particularly impaired formation of and responsiveness to nitric oxide (NO) and the downstream effectors soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase I (PKGI). One important target of PKGI in smooth muscle is the large-conductance, Ca2+ -activated potassium (BKCa) channel. In our previous report (42), we demonstrated that deletion of the BKCa channel in mice induced force oscillations and led to reduced nerve-evoked relaxations and ED. In the current study, we used this ED model to explore the role of the BKCa channel in the NO/sGC/PKGI pathway. Electrical field stimulation (EFS)-induced contractions of corpus cavernosum smooth muscle strips were significantly enhanced in the absence of BKCa channel function. In strips precontracted with phenylephrine, EFS-induced relaxations were converted to contractions by inhibition of sGC, and this was further enhanced by loss of BK channel function. Sildenafil-induced relaxations were decreased to a similar extent by inhibition of sGC or BKCa channels. At concentrations >1 microM, sildenafil caused relaxations independent of inhibition of sGC or BKCa channels. Sildenafil did not affect the enhanced force oscillations that were induced by the loss of BKCa channel function. Yet, these oscillations could be completely eliminated by blocking L-type voltage-dependent Ca2+ channels (VDCCs). These results suggest that therapeutically relevant concentrations of sildenafil act through cGMP and BKCa channels, and loss of BKCa channel function leads to hypercontractility, which depends on VDCCs and cannot be modified by the cGMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号