首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Molecular Mechanisms of Urea Transport   总被引:6,自引:0,他引:6  
Physiologic data provided evidence for specific urea transporter proteins in red blood cells and kidney inner medulla. During the past decade, molecular approaches resulted in the cloning of several urea transporter cDNA isoforms derived from two gene families: UT-A and UT-B. Polyclonal antibodies were generated to the cloned urea transporter proteins, and their use in integrative animal studies resulted in several novel findings, including: (1) UT-B is the Kidd blood group antigen; (2) UT-B is also expressed in many non-renal tissues and endothelial cells; (3) vasopressin increases UT-A1 phosphorylation in rat inner medullary collecting duct; (4) the surprising finding that UT-A1 protein abundance and urea transport are increased in the inner medulla during conditions in which urine concentrating ability is reduced; and (5) UT-A protein abundance is increased in uremia in both liver and heart. This review will summarize the knowledge gained from studying molecular mechanisms of urea transport and from integrative studies into urea transporter protein regulation.  相似文献   

4.
5.
Urea transport in the kidney is mediated by a family of transporter proteins, including renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). We aimed to determine whether hydration status affects the subcellular distribution of urea transporters. Male Sprague-Dawley rats were divided into three groups: dehydrated rats (WD) given minimum water, hydrated rats (WL) given 3% sucrose in water for 3 days before death, and control rats given free access to water. We labeled kidney sections with antibodies against UT-A1 and UT-A2 (L194), UT-A3 (Q2), and UT-B using preembedding immunoperoxidase and immunogold methods. In control animals, UT-A1 and UT-A3 immunoreactivities were observed throughout the cytoplasm in inner medullary collecting duct (IMCD) cells, and weak labeling was observed on the basolateral plasma membrane. UT-A2 immunoreactivity in the descending thin limbs (DTL) was observed mainly on the apical and basolateral membranes of type I epithelium, and very faint labeling was observed in the long-loop DTL at the border between the outer and inner medulla. UT-A1 immunoreactivity intensity was markedly lower, and UT-A3 immunoreactivity was higher in IMCD of WD vs. controls. UT-A2 immunoreactivity intensities in the plasma membrane and cytoplasm of type I, II, and III epithelia of DTL were greater in WD vs. controls. In contrast, UT-A1 expression was greater and UT-A2 and UT-A3 expressions were lower in WL vs. controls. The subcellular distribution of UT-A in DTL or IMCD did not differ between control and experimental animals. UT-B was expressed in the plasma membrane of the descending vasa recta of both control and experimental animals. UT-B intensity was higher in WD and lower in WL vs. controls. These data indicate that changes in hydration status over 3 days affected urea transporter protein expression without changing its subcellular distribution.  相似文献   

6.
Jk (kidd) blood group antigens are carried by the urea transporter UT-B[1,2]. The Jknull phenotype, lack-ing urea permeability in erythrocytes[3,4], has a very low frequency in all populations except Polynesians and Finns[5]. In Japan, only 14 individuals with Jk (a-b-) phenotype were identified from 638460 screened donor’s blood samples using the 2 mol/L urea solution hemolysis test[6]. The frequency of Jknull is 0.27% in Polynesian, about 0.03% in Finland[7], and extremely rare in Fran…  相似文献   

7.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

8.
Urea transporter B (UT-B, encoded by the SLC14A1 gene) is a membrane channel protein involved in urea transmembrane transport. Compared with normal tissues, UT-B expression is significantly decreased in most tumours, especially melanoma. However, the UT-B role in tumorigenesis and development is still unclear. Herein, we investigated the effects of UT-B overexpression on polyamine metabolism and the urea cycle in murine melanoma B16 cells, to explore the roles of mitochondrial dysfunction and p53 activation in cell growth and polyamines metabolism. UT-B overexpression in B16 cells decreased cell growth, increased apoptosis, and significantly altered metabolic pathways related to the urea cycle, which were characterized by reduced production of urea and polyamines and increased production of nitric oxide. Subsequently, we observed that activation of the p53 pathway may be the main cause of the above phenomena. The p53 inhibitor pifithrin-α partially restored the production of polyamines, but the mitochondrial morphology and function were still impaired. Further treatment of UT-B-overexpressing B16 cells with reactive oxygen species scavenging agent N-acetyl-l-cysteine and coenzyme Q10 restored cell viability and mitochondrial function and increased polyamine production. In conclusion, UT-B overexpression caused mitochondrial dysfunction and increased oxidative stress in B16 cells, and then activated p53 expression, which may be one of the mechanisms leading to the decrease in intracellular polyamines.  相似文献   

9.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

10.
11.
12.
13.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with Ps > 5.0 × 10− 6 cm/s at 10 °C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (Ea > 10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by > 60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

14.
Urea transporter UT-B has been proposed to be the major urea transporter in erythrocytes and kidney-descending vasa recta. The mouse UT-B cDNA was isolated and encodes a 384-amino acid urea-transporting glycoprotein expressed in kidney, spleen, brain, ureter, and urinary bladder. The mouse UT-B gene was analyzed, and UT-B knockout mice were generated by targeted gene deletion of exons 3-6. The survival and growth of UT-B knockout mice were not different from wild-type littermates. Urea permeability was 45-fold lower in erythrocytes from knockout mice than from those in wild-type mice. Daily urine output was 1.5-fold greater in UT-B- deficient mice (p < 0.01), and urine osmolality (U(osm)) was lower (1532 +/- 71 versus 2056 +/- 83 mosM/kg H(2)O, mean +/- S.E., p < 0.001). After 24 h of water deprivation, U(osm) (in mosM/kg H(2)O) was 2403 +/- 38 in UT-B null mice and 3438 +/- 98 in wild-type mice (p < 0.001). Plasma urea concentration (P(urea)) was 30% higher, and urine urea concentration (U(urea)) was 35% lower in knockout mice than in wild-type mice, resulting in a much lower U(urea)/P(urea) ratio (61 +/- 5 versus 124 +/- 9, p < 0.001). Thus, the capacity to concentrate urea in the urine is more severely impaired than the capacity to concentrate other solutes. Together with data showing a disproportionate reduction in the concentration of urea compared with salt in homogenized renal inner medullas of UT-B null mice, these data define a novel "urea-selective" urinary concentrating defect in UT-B null mice. The UT-B null mice generated for these studies should also be useful in establishing the role of facilitated urea transport in extrarenal organs expressing UT-B.  相似文献   

15.
16.
Molecular and functional characterization of an amphibian urea transporter.   总被引:4,自引:0,他引:4  
We report the characterization of a frog (Rana esculenta) urea transporter (fUT). The cloned cDNA is 1.4 kb long and contains a putative open reading frame of 1203 bp. In frog urinary bladder, the gene is expressed as two mRNAs of 4.3 and 1.6 kb. The fUT protein is 63.1 and 56.3% identical to rat UT-A2 and UT-B1, respectively. The internal duplication of UT-A2 and UT-B, as well as the double LP box urea transporter signature sequence were found in this amphibian urea transporter. When expressed in Xenopus oocytes, fUT induced a 10-fold increase in urea permeability, which was blocked by both phloretin and mercurial reagents. The fUT protein did not transport thiourea, but the fUT-mediated urea transport was strongly inhibited by this compound. Thus, this amphibian urea transporter displays transport characteristics in between those of UT-A2 and UT-B.  相似文献   

17.
In human skin fibroblasts, a lysosomal transport system specific for cationic amino acids has been described and named system c. We asked if SLC7A14 (solute carrier family 7 member A14), an orphan protein assigned to the SLC7 subfamily of cationic amino acid transporters (CATs) due to sequence homology, may represent system c. Fusion proteins between SLC7A14 and enhanced GFP localized to intracellular vesicles, co-staining with the lysosomal marker LysoTracker®. To perform transport studies, we first tried to redirect SLC7A14 to the plasma membrane (by mutating putative lysosomal targeting motifs) but without success. We then created a chimera carrying the backbone of human (h) CAT-2 and the protein domain of SLC7A14 corresponding to the so-called “functional domain” of the hCAT proteins, a protein stretch of 81 amino acids that determines the apparent substrate affinity, sensitivity to trans-stimulation, and (as revealed in this study) pH dependence. The chimera mediated arginine transport and exhibited characteristics similar but not identical to hCAT-2A (the low affinity hCAT-2 isoform). Western blot and microscopic analyses confirmed localization of the chimera in the plasma membrane of Xenopus laevis oocytes. Noticeably, arginine transport by the hCAT-2/SLC7A14 chimera was pH-dependent, trans-stimulated, and inhibited by α-trimethyl-l-lysine, properties assigned to lysosomal transport system c in human skin fibroblasts. Expression analysis showed strong expression of SLC7A14 mRNA in these cells. Taken together, these data strongly suggest that SLC7A14 is a lysosomal transporter for cationic amino acids.  相似文献   

18.
1. An analytical technique of isoelectric focusing in thin layers of polyacrylamide gel has been used to determine the isoelectric point, pI, of several proteins in the presence and in the absence of concentrated urea. 2. The presence of urea did not greatly affect pI except for bovine plasma albumin, where an increase of approx. 1pH unit was found. 3. Evidence is presented that this change in the pI of bovine plasma albumin is due to the normalization of certain ionizable groups on unfolding of the protein in urea. 4. Evidence is also presented that prolonged exposure of bovine plasma albumin to urea results in intramolecular disulphide interchange and that, on removal of urea, the new patterns of disulphide bonding stabilize abnormal conformations with pI values intermediate between those of the native and denatured states. 5. The studies demonstrate heterogeneity in bovine plasma albumin based on primary-sequence differences. 6. Isoelectric focusing of proteins in urea appears to be useful in the study of various aspects of protein structure.  相似文献   

19.
A urea-selective urine-concentrating defect was found in transgenic mice deficient in urea transporter (UT)-B. To determine the role of facilitated urea transport in extrarenal organs expressing UT-B, we studied the kinetics of [14C]urea distribution in UT-B-null mice versus wild-type mice. After renal blood flow was disrupted, [14C]urea distribution was selectively reduced in testis in UT-B-null mice. Under basal conditions, total testis urea content was 335.4 ± 43.8 µg in UT-B-null mice versus 196.3 ± 18.2 µg in wild-type mice (P < 0.01). Testis weight in UT-B-null mice (6.6 ± 0.8 mg/g body wt) was significantly greater than in wild-type mice (4.2 ± 0.8 mg/g body wt). Elongated spermatids were observed earlier in UT-B-null mice compared with wild type mice on day 24 versus day 32, respectively. First breeding ages in UT-B knockout males (48 ± 3 days) were also significantly earlier than that in wild-type males (56 ± 2 days). In competing mating tests with wild-type males and UT-B-null males, all pups carried UT-B-targeted genes, which indicates that all pups were produced from breeding of UT-B-null males. Experiments of the expression of follicle-stimulating hormone receptor (FSHR) and androgen binding protein (ABP) indicated that the development of Sertoli cells was also earlier in UT-B-null mice than that in wild-type mice. These results suggest that UT-B plays an important role in eliminating urea produced by Sertoli cells and that UT-B deletion causes both urea accumulation in the testis and early maturation of the male reproductive system. The UT-B knockout mouse may be a useful experimental model to define the molecular mechanisms of early puberty. urea transporter; Sertoli cell; testis; male sexual function; spermatogenesis  相似文献   

20.
Monocarboxylate-H+ cotransporters, such as monocarboxylate transporter (MCT) SLC16A, have been suggested to mediate transruminal fluxes of short-chain fatty acids, ketone bodies, and lactate. Using an RT-PCR approach, we demonstrate expression of MCT1 (SLC16A1) and MCT2 (SLC16A7) mRNA in isolated bovine rumen epithelium. cDNA sequence from these PCR products combined with overlapping expressed sequence tag data allowed compilation of the complete open reading frames for MCT1 and MCT2. Immunohistochemical localization of MCT1 shows plasma membrane staining in cells of the stratum basale, with intense staining of the basal aspects of the cells. Immunostaining decreased in the cell layers toward the rumen lumen, with weak staining in the stratum spinsoum. Immunostaining in the stratum granulosum and stratum corneum was essentially negative. Since monocarboxylate transport will load the cytosol with acid, expression and location of Na+/H+ exchanger (NHE) family members within the rumen epithelium were determined. RT-PCR demonstrates expression of multiple NHE family members, including NHE1, NHE2, NHE3, and NHE8. In contrast to MCT1, immunostaining showed that NHE1 was predominantly localized to the stratum granulosum, with a progressive decrease toward the stratum basale. NHE2 immunostaining was observed mainly at an intracellular location in the stratum basale, stratum spinosum, and stratum granulosum. Given the anatomic localization of MCT1, NHE1, and NHE2, the mechanism of transruminal short-chain fatty acid, ketone body, and lactate transfer is discussed in relation to a functional model of the rumen epithelium comprising an apical permeability barrier at the stratum granulosum, with a cell syncitium linking the stratum granulosum to the blood-facing stratum basale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号