首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new Naringenin Schiff-base ligand (H3L) and its complex, [La(H2L)2(NO3).3H2O], have been synthesized and characterized on the basis of elemental analyses, molar conductivities, mass spectra, 1H NMR, thermogravimetry/differential thermal analysis (TG-DTA), UV spectra, and IR spectra. Spectrometric titrations, ethidium bromide displacement experiments, and viscosity measurements indicate that the two compounds, especially the La(III) complex, strongly bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constants of the La(III) complex and ligand with DNA were 1.83 x 10(7) and 9.46 x 10(5) M(-1), respectively. Comparative cytotoxic activities of the La(III) complex and ligand were also determined by MTT [3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide] and SRB (sulforhodamine B) methods. The results showed that the La(III) complex had significant cytotoxic activity against the tested cells.  相似文献   

2.
A novel 6-hydroxy chromone-3-carbaldehyde benzoyl hydrazone ligand (L) and its Ln(III) complexes, [Ln=La(1) and Sm(2)], have been prepared and characterized. The crystal and molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Antioxidative activity tests in vitro showed that L and its complexes have significant antioxidative activity against hydroxyl free radicals from the Fenton reaction and also oxygen free radicals, and that the effect of the La(III) complex 1 is stronger than that of mannitol and the other compounds. The compounds were tested against tumor cell lines including HL-60 and A-549. The data shows that the suppression rate of complexes 1 and 2 against the tested tumor cells are superior to the free ligand (L). The interactions of complexes 1 and 2, and L, with calf thymus DNA were investigated by UV-visible (UV-vis), fluorescence, denaturation experiments and viscosity measurements. Experimental results indicated that complexes 1 and 2, and L can bind to DNA via the intercalation mode, and that the binding affinity of complex 1 is higher than that of complex 2 and of free ligand (L). The intrinsic binding constants of complexes 1 and 2, and L were (7.62+/-0.56)x10(6), (3.70+/-0.47)x10(6) and (2.41+/-0.46)x10(6)M(-1), respectively.  相似文献   

3.
The interaction of the lanthanum(III) La(III)-L (L=N,N'-bis-(1-carboxy-2-methylpropyl)-1,10-phenanthroline-2,9-dimethanamine) complex with calf thymus DNA was studied by electronic spectra, fluorescence spectra and circular dichroic spectra. The La(III)-L complex was assayed for antitumor activity in vitro against the HL-60 (the human leucocytoma) cells, HCT-8 (the human coloadenocarcinoma) cells, BGC-823 (the human carcinoma of stomach) cells, Bel-7402 (the human liver carcinoma) cells and KB (the human nasopharyngeal carcinoma) cells. The results show that the La(III)-L complex has activity against HL-60 cells, Bel-7402 cells and KB cells. Moreover, it is slightly more effective against Bel-7402 cell line than cisplatin. Using ethidium bromide as a fluorescence probe, the binding mode of the La(III)-L complex to calf-thymus DNA was studied spectroscopically. For comparison, the same measurements were carried out with La(III)-Phen [La(III)-1,10-phenanthroline complex] and La(III)-Val [La(III)-L-valine complex]. The results indicate that the La(III)-L and La(III)-Phen complexes possibly interact with calf-thymus DNA by both intercalative and coordination binding, whereas the La(III)-Val complex interacts with calf-thymus DNA by coordination binding. Kinetics of binding of the three complexes to DNA is for the first time studied using ethidium bromide as a fluorescence probe with stopped-flow spectrophotometer under pseudo-first-order condition. The strong two-step mechanisms in the process of the La(III)-L and La(III)-Phen complexes and one step in the process of the complex La(III)-Val interacting with DNA are observed, and the k(obs) (observed pseudo-first-order rate constant) and E(a) (observed energy of activation) values of binding to DNA are obtained.  相似文献   

4.
A new ligand, 6-hydroxy chromone-3-carbaldehyde-(2'-hydroxy) benzoyl hydrazone (L), was prepared by condensation of 6-hydroxy-3-carbaldehyde chromone (CDC) with 2-hydroxy benzoyl hydrazine. Its four rare earth complexes have been synthesized and characterized on the basis of elemental analyses, molar conductivities, mass spectra, 1H NMR, thermogravimetry/differential thermal analysis (TG-DTA), UV-vis spectra, fluorescence spectra, and IR spectra. The general formula of the complexes is [LnL2.(NO3)2].NO3 [Ln=La(1), Sm(2), Dy(3), Eu(4)]. Spectrometric titration, ethidium bromide displacement experiments, and viscosity measurements indicate that Eu(III) complex and ligand, especially the Eu(III) complex, strongly bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constants of Eu(III) complex and ligand with DNA were 3.55 x 10(6) and 1.33 x 10(6)M(-1) through fluorescence titration data, respectively. In addition, the suppression ratio for O2-* and OH* of the ligand and its complexes was studied by spectrophotometric methods. The experimental results show that La (1), Sm (2), and Eu (4) complexes are better effective inhibitor for OH* than that of mannitol. It indicates that the complexes have the activity to suppress O2-* and OH* and exhibit more effective antioxidants than ligand alone.  相似文献   

5.
The involvement of the Fe cations in autoxidation in cells and tissues is well documented. DNA is a major target in such reaction, and can chelate Fe cation in many ways. The present study was designed to examine the interaction of calf-thymus DNA with Fe(II) and Fe(III), in aqueous solution at pH 6.5 with cation/DNA (P) (P = phosphate) molar ratios (r) of 1:160 to 1:2. Capillary electrophoresis and Fourier transform infrared (FTIR) difference spectroscopic methods were used to determine the cation binding site, the binding constant, helix stability and DNA conformation in Fe-DNA complexes. Structural analysis showed that at low cation concentration (r = 1/80 and 1/40), Fe(II) binds DNA through guanine N-7 and the backbone PO(2) group with specific binding constants of K(G) = 5.40 x 10(4) M(1) and K(P) = 2.40 x 10(4) M(1). At higher cation content, Fe(II) bindings to adenine N-7 and thymine O-2 are included. The Fe(III) cation shows stronger interaction with DNA bases and the backbone phosphate group. At low cation concentration (r = 1:80), Fe(III) binds mainly to the backbone phosphate group, while at higher metal ion content, cation binding to both guanine N-7 atom and the backbone phosphate group is prevailing with specific binding constants of K(G) = 1.36 x 10(5) M(-1) and K(P) = 5.50 x 10(4) M(-1). At r = 1:10, Fe(II) binding causes a minor helix destabilization, whereas Fe(III) induces DNA condensation. No major DNA conformational changes occurred upon iron complexation and DNA remains in the B-family structure.  相似文献   

6.
2-Carboxylbenzaldehyde thiosemicarbazone (HL), and its three lanthanide (III) complexes, LnL(3) x 4H(2)O [Ln(III)=La, Sm, Eu], have been synthesized in water. The complexes were characterized by elemental analyses, molar conductivity and IR spectra. The crystal structure of [Sm(2)L(6)(CH(3)OH)(4)] x 7.5CH(3)OH x 0.5H(2)O obtained from methanol solution was determined by X-ray diffraction analysis, crystallized in the triclinic system, space group P-1, Z=1, a=12.217 (2)A, b=14.706 (2)A, c=15.035 (2)A, alpha=111.84(1) degrees , beta=103.47(1) degrees , gamma=104.24(1) degrees , R(1)=0.0290. It has symmetrical (mu-OCO)(2), (mu-O)(2) and disamarium(III) units. The coordination geometry of each Sm(III) ion is a distorted tetradecahedron with nine oxygen atoms. In addition, the DNA-binding properties of the ligand and its complexes have been investigated by absorption, fluorescence, and viscosity measurements. The experimental results indicate that the ligand and the Sm-complex can bind to DNA, but the other two complexes cannot; the binding affinity of the Sm-complex is higher than that of the ligand and the intrinsic binding constant K(b) of the complex is 3.22 x 10(5)M(-1).  相似文献   

7.
In this study, a new lanthanum (III)-amino acid complex utilizing cysteine has been synthesized and characterized. The anticancer activities of the prepared La(III) complex against MCF-7 cell lines were studied. Results of MTT assay showed that at all three incubation times, the cytotoxic effect of prepared La(III) complex on MCF-7 breast cancer cell lines displays a time- and dose-dependent inhibitory effects. The interactions of the La(III) complex with two whey proteins (bovine serum albumin, BSA, and Bovine β-lactoglobulin, βLG) have been explored by using spectroscopic and molecular dicking methods. The obtained results indicated that La(III) complex strongly quenched the fluorescence of two carrier proteins in static quenching mode and also, BSA hah stronger binding affinity toward studied complex than βLG whit binding constant values of KBSA-La?Complex?~?0.11?×?104 M?1 and KβLG-La?Complex?~?0.63?×?103 M?1 at 300 K. The thermodynamic parameters revealed the contribution of hydrogen bond and Vander Waals interactions in both systems. The distances of the La(III) complex whit whey proteins were calculated using Förster energy transfer theory and proved existence of the energy transfer between two proteins and prepared La(III) complex with a high probability. FT-IR and UV–Vis absorption measurements indicated that the binding of the La(III) to BSA and βLG may induce conformational and micro-environmental changes of the proteins. The docking results indicate that the La(III) complex bind to residues located in the site II of BSA and second site of βLG.

Communicated by Ramaswamy H. Sarma  相似文献   


8.
Co(II) interacts with bleomycin in aqueous solution, in the presence of air, to give a short-lived mononuclear superoxo Co(III) complex (I). Then, two molecules of complex I react together, with the loss of oxygen, to yield the dinuclear mu-peroxo Co(III) complex (II); the dimerization follows a second-order rate law with k2 = 200 +/- 50 M-1 s-1 at 25 degrees C. The rate of dimerization is lowered by a factor of 2000 when DNA is present at a molar ratio of [nucleotide]/[Co] higher than 16. These results and studies of circular dichroism and electron paramagnetic resonance spectra of complexes strongly suggest the binding of the superoxo complex to DNA (I') as well as that of the mu-peroxo complex (II'); the binding of 1 molecule of complex II for every 2.9 base pairs in DNA has been determined with an apparent equilibrium constant of 8.4 x 10(4) M-1.  相似文献   

9.
Eight rare earth metal(II) complexes with quercetin ML3 x 6H2O [L=quercetin (3-OH group deprotonated); M = La, Nd, Eu, Gd, Tb, Dy, Tm and Y] have been synthesized and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, UV, 1HNMR and fluorescence spectra techniques as well as cyclic voltammetry. The quercetin:metal stoichiometry and the equilibrium stability constant for metal binding to quercetin have been determined. The antioxidative and antitumor activities of quercetin x 2H2O and the complexes were tested by both the MTT and SRB methods. The results show that the suppression ratio of the complexes against the tested tumour cells are superior to quercetin x 2H2O. The property of LaL3 x 6H2O reacting with calf thymus DNA was studied by fluorescence methods. The La-complex binding to DNA has been determined by fluorescence titration in 0.05 M Tris-HCl, 0.5 M NaCl buffer (pH 7.0). The results indicate that the interaction of the complex with DNA is very evident.  相似文献   

10.
A chromium(III) complex [Cr(DPPZ)(2)Cl(2)](+), where DPPZ is a planar bidentate ligand with an extended aromatic system, has been found to bind strongly to CT DNA with an apparent binding constant of (1.8+/-0.5)x10(7) M(-1). The effects of [Cr(DPPZ)(2)Cl(2)](+) on the melting temperature and the viscosity of DNA clearly show that the chromium(III) complex interacts with DNA intercalatively. Competitive binding study shows that the enhancement in emission intensity of ethidium bromide (EthBr) in the presence of DNA was quenched by [Cr(DPPZ)(2)Cl(2)](+) indicating that the Cr(III) complex displaces EthBr from its binding site in DNA. The binding of this complex has been found to bring about B to Z conformational transition in CT DNA as well as poly(dG-dC).poly(dG-dC). Molecular modeling study also shows that binding energy of the complex with d(GC)(12) is much higher than Dickerson model and d(AT)(12). Modeling studies show that [Cr(DPPZ)(2)Cl(2)](+) brings about twist in the DNA base pairs as well as phosphate ester backbone resulting in conformational transition in DNA.  相似文献   

11.
Biogenic polyamines, such as putrescine, spermidine, and spermine are small organic polycations involved in numerous diverse biological processes. These compounds play an important role in nucleic acid function due to their binding to DNA and RNA. It has been shown that biogenic polyamines cause DNA condensation and aggregation similar to that of inorganic cobalt(III)hexamine cation, which has the ability to induce DNA conformational changes. However, the nature of the polyamine.DNA binding at the molecular level is not clearly established and is the subject of much controversy. In the present study the effects of spermine, spermidine, putrescine, and cobalt(III)hexamine on the solution structure of calf-thymus DNA were investigated using affinity capillary electrophoresis, Fourier transform infrared, and circular dichroism spectroscopic methods. At low polycation concentrations, putrescine binds preferentially through the minor and major grooves of double strand DNA, whereas spermine, spermidine, and cobalt(III)hexamine bind to the major groove. At high polycation concentrations, putrescine interaction with the bases is weak, whereas strong base binding occurred for spermidine in the major and minor grooves of DNA duplex. However, major groove binding is preferred by spermine and cobalt(III)hexamine cations. Electrostatic attractions between polycation and the backbone phosphate group were also observed. No major alterations of B-DNA were observed for biogenic polyamines, whereas cobalt(III)hexamine induced a partial B --> A transition. DNA condensation was also observed for cobalt(III)hexamine cation, whereas organic polyamines induced duplex stabilization. The binding constants calculated for biogenic polyamines are K(Spm) = 2.3 x 10(5) M(-1), K(Spd) = 1.4 x 10(5) M(-1), and K(Put) = 1.02 x 10(5) M(-1). Two binding constants have been found for cobalt(III)hexamine with K(1) = 1.8 x 10(5) M(-1) and K(2) = 9.2 x 10(4) M(-1). The Hill coefficients indicate a positive cooperativity binding for biogenic polyamines and a negative cooperativity for cobalt(III)hexamine.  相似文献   

12.
The boronic functionalities on the outer surface of the Gd(III) bis(m-boroxyphenylamide)DTPA complex (Gd(III)L) enable it to bind to fructosamine residues of oxygenated glycated human adult hemoglobin. The formation of the macromolecular adduct can be assessed by NMR spectroscopy via observation of the enhancement of the solvent water proton relaxation rate. Unexpectedly, a strong binding interaction was also observed for the oxygenated unglycated human adult hemoglobin, eventually displaying a much higher relaxation enhancement. From relaxation rate measurements it was found that two Gd(III)L complexes interact with one hemoglobin tetramer (KD = 1.0 x 10(-5) M and 4.6 x 10(-4) M, respectively), whereas no interaction has been observed with monomeric hemoproteins. A markedly higher affinity of the Gd(III)L complex has been observed for oxygenated and aquo-met human adult hemoglobin derivatives with respect to the corresponding deoxy derivative. Upon binding, a net change in the quaternary structure of hemoglobin has been assessed by monitoring the changes in the high-resolution 1H-NMR spectrum of the protein as well as in the Soret absorption band. On the basis of these observations and the 11B NMR results obtained with the diamagnetic La(III)L complex, we suggest that the interaction between the lanthanide complex and deoxygenated, oxygenated, and aquo-met derivatives of human adult hemoglobin takes place at the 2, 3-diphosphoglycerate (DPG) binding site, through the formation of N-->B coordinative bonds at His143beta and His2beta residues of different beta-chains. The stronger binding to the oxygenated form is then responsible for a shift of the allosteric equilibrium toward the high-affinity R-state. Accordingly, Gd(III)L affinity for oxygenated human fetal hemoglobin (lacking His143beta) is significantly lower than that observed for the unglycated human adult tetramer.  相似文献   

13.
The neutral mononuclear Ln(III) complexes (Ln = La, Sm) with 7-methoxychrom-one-3-carbaldehyde-isonicotinoyl hydrazone ligand (L) have been synthesized, characterized and investigated their interactions with calf-thymus DNA. The results show that the binding affinity of the La(III) complex is stronger than that of the Sm(III) complex and that of the ligand (L). Furthermore, the antioxidant activities of the ligand (L) and its Ln(III) complexes (Ln = La, Sm) were studied in detail.  相似文献   

14.
Two mixed ligand complexes of the type [M(phen)(2)(qbdp)](PF(6))n.xH(2)O where M = Co(III) and Ni(II), qbdp = quinolo[3,2-b] benzodiazepine and phen = 1,10-phenanthroline, n = 3 or 2, x = 2 or 3 have been synthesized and characterized by employing analytical and spectral methods. The DNA binding property of the complexes with calf thymus-DNA has been investigated by using absorption spectra, viscosity measurements as well as thermal denaturation studies. The absorption spectral results indicate that the Co(III) and Ni(II) complexes intercalate between the base pairs of the DNA tightly with intrinsic DNA binding constant of 6.4 x 10(4) and 4.8 x 10(4) M(-1) in Tris HCl buffer containing 50 mM NaCl, respectively. The large enhancement in the relative viscosity of DNA on binding to the quinolo [3,2-b] benzodiazepine supports the proposed DNA binding modes. The complexes on reaction with super coiled (SC) DNA shows nuclease activity.  相似文献   

15.
Two new cobalt complexes, [Co(pytpy)(2)](ClO(4))(2), 1, and [Co(pytpy)(2)](ClO(4))(3), 2 where pytpy=pyridine terpyridine, have been synthesized and characterized. Single-crystal X-ray structure of both the complexes has been resolved. The structure shows the complexes to be a monomeric cobalt(II) and cobalt(III) species with two pytpy ligands coordinated to the metal ion to give a six coordinate complex. Both cobalt(II) and cobalt(III) complexes crystallize in meridional configuration. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission spectral, electrochemical studies and viscosity measurements. From the experimental results the DNA binding constants of 1 and 2 are found to be (1.97+/-0.15)x10(4)M(-1) and (2.7+/-0.20)x10(4)M(-1) respectively. The ratio of DNA binding constants of 1 and 2 have been estimated to be 0.82 from electrochemical studies, which is in close agreement with the value of 0.73 obtained from spectral studies. The observed changes in viscosity of DNA in the presence of increasing amount of complexes 1 and 2 suggest intercalating binding of these complexes to DNA. Results of DNA cleaving experiments reveal that complex 2 efficiently cleaves DNA under photolytic conditions while complex 1 does not cleave DNA under similar conditions.  相似文献   

16.
A strong interaction between iron(III) and calf thymus DNA at pH 7.4 was demonstrated in the present study by separation of the complex by column chromatography and by the slow kinetics of iron(III) removal from DNA by disodium-1,2-dihydroxybenzene-3,5-disulfonate (Tiron). An equilibrium constant of 2.1 x 10(14) was calculated by measurements of bound iron(III) by flame atomic absorption spectroscopy and assuming a one iron to two nucleotide stoichiometry. Graphic analysis of the interaction however, indicated that DNA has two binding sites for iron(III) characterized by a stoichiometry of one iron to 12 nucleotides and one iron to 2 nucleotides, and association constants of 4.8 x 10(12) and 2.3 x 10(11), respectively. The DNA-iron(III) complex isolated by column chromatography was shown to catalyze the oxidation of both 2-phenylethylhydrazine and methylhydrazine by spin-trapping experiments with alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN). By contrast, oxidation of 1,2-dimethylhydrazine was not catalyzed. Catalysis of 2-phenylethylhydrazine oxidation was confirmed by oxygen consumption studies. The results suggest that iron chelated to DNA may be significant in DNA damage induced by oxidizable chemicals.  相似文献   

17.
18.
Novel dipyridophenazine (DPPZ) complexes of osmium (II), [Os(L)2(DPPZ)]2+ [L = 2,2'-bipyridyl (bpy)(1), 4,4'-diamino-2,2'-bipyridyl (DA-bpy)(2), 4,4'-dimethyl-2,2'-bipyridyl(DM-bpy)(3), and 4,4'-dicarboxyl-2,2'-bipyridyl (DC-bpy)(4)] have been synthesized and characterized. The DNA-binding properties of the complexes were studied by electrochemical methods. As the results, complex 2 shows higher affinity to DNA than other osmium complexes. The binding constant, K of complex 2 to calf thymus DNA has been determined to be 2.3 x 10(7) M-1 by normal pulse voltammetry (NPV).  相似文献   

19.
Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases.  相似文献   

20.
Since conformation of the molecule plays a vital role in the activity of drug, we have investigated the DNA interaction of a chromium(III) complex with ligands in two conformations. Chromium(III) complexes derived from chiral binaphthyl Schiff base ligands, viz. R- and S-2,2'-bis(salicylideneamino) 1,1'-binaphthyl, have been synthesized and characterized by mass, IR, and electronic spectra. The interaction of these R- and S-binaphthyl Schiff base chromium(III) complexes with CT-DNA was investigated with the goal of examining whether the chirality has an influence on the chromium(III)-DNA binding properties. The difference in chirality of the ligand did not show any striking difference in binding properties. The binding constants for R and S conformers were estimated to be 18 (+/-0.4) x 10(3) and 9.4 (+/-0.3) x 10(3) M(-1), respectively, through spectroscopic titrations. All the experimental results are suggestive that both the isomers are DNA groove binders. The results of steady-state as well as time-resolved fluorescence experiments, however, suggest that the R conformer has restricted mobility when bound to DNA because it is more deeply buried in the groove of DNA compared to the S isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号