首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila sugarless and sulfateless genes encode enzymes required for the biosynthesis of heparan sulfate glycosaminoglycans. Biochemical studies have shown that heparan sulfate glycosaminoglycans are involved in signaling by fibroblast growth factor receptors, but evidence for such a requirement in an intact organism has not been available. We now demonstrate that sugarless and sulfateless mutant embryos have phenotypes similar to those lacking the functions of two Drosophila fibroblast growth factor receptors, Heartless and Breathless. Moreover, both Heartless- and Breathless-dependent MAPK activation is significantly reduced in embryos which fail to synthesize heparan sulfate glycosaminoglycans. Consistent with an involvement of Sulfateless and Sugarless in fibroblast growth factor receptor signaling, a constitutively activated form of Heartless partially rescues sugarless and sulfateless mutants, and dosage-sensitive interactions occur between heartless and the heparan sulfate glycosaminoglycan biosynthetic enzyme genes. We also find that overexpression of Branchless, the Breathless ligand, can partially overcome the requirement of Sugarless and Sulfateless for Breathless activity. These results provide the first genetic evidence that heparan sulfate glycosaminoglycans are essential for fibroblast growth factor receptor signaling in a well defined developmental context, and support a model in which heparan sulfate glycosaminoglycans facilitate fibroblast growth factor ligand and/or ligand-receptor oligomerization.  相似文献   

2.
E D Schejter  B Z Shilo 《Cell》1989,56(6):1093-1104
Recessive lethal mutations in the genetic locus of the Drosophila EGF receptor homolog (DER) were isolated. Identification of mutations in the gene is based on assays of DER protein autophosphorylation activity. Most DER alleles show little or no in vivo autophosphorylation. The ability to monitor these activities in vivo and in vitro offers a preliminary insight into the functional defects in the different mutant proteins. The identification of the DER locus was also confirmed by partial rescue of the mutant phenotype with a DER P-element construct. Homozygous DER mutants display a complex embryonic phenotype. Most notably, the anterior structures deteriorate, ventral denticle bands are missing, the germ band does not retract, and the central nervous system shows a collapse of commissure and midline pattern. Mutations in DER were shown to be allelic to the previously described locus faint little ball.  相似文献   

3.
4.
5.
M Parisi  H Lin 《Genetics》1999,153(1):235-250
The pumilio (pum) gene plays an essential role in embryonic patterning and germline stem cell (GSC) maintenance during oogenesis in Drosophila. Here we report on a phenotypic analysis using pum(ovarette) mutations, which reveals multiple functions of pum in primordial germ cell proliferation, larval ovary formation, GSC division, and subsequent oogenic processes, as well as in oviposition. Specifically, by inducing pum(-) GSC clones at the onset of oogenesis, we show that pum is directly involved in GSC division, a function that is distinct from its requirement in primordial germ cells. Furthermore, we show that pum encodes 156- and 130-kD proteins, both of which are functional isoforms. Among pum(ovarette) mutations, pum(1688) specifically eliminates the 156-kD isoform but not the 130-kD isoform, while pum(2003) and pum(4277) specifically affect the 130-kD isoform but not the 156-kD isoform. Normal doses of both isoforms are required for the zygotic function of pum, yet either isoform alone at a normal dose is sufficient for the maternal effect function of pum. A pum cDNA transgene that contains the known open reading frame encodes only the 156-kD isoform and rescues the phenotype of both pum(1688) and pum(2003) mutants. These observations suggest that the 156- and 130-kD isoforms can compensate for each other's function in a dosage-dependent manner. Finally, we present molecular evidence suggesting that the two PUM isoforms share some of their primary structures.  相似文献   

6.
The Drosophila homolog of Aut1 is essential for autophagy and development   总被引:1,自引:0,他引:1  
Juhász G  Csikós G  Sinka R  Erdélyi M  Sass M 《FEBS letters》2003,543(1-3):154-158
The Drosophila homolog of yeast Aut1, CG6877/Draut1, is a ubiquitously expressed cytosolic protein. Draut1 loss of function was achieved by expression of an inverted repeat transgene inducing RNA interference. The effect is temperature-dependent and resembles an allelic series as described by Fortier, E. and Belote, J.M. (Genesis 26 (2000) 240-244). Draut1 loss of function larvae are unable to induce autophagy and heterophagy in fat body cells before pupariation and die during metamorphosis. To our knowledge, this is the first report of a multicellular animal lacking the function of a gene participating in the protein conjugation systems of autophagy.  相似文献   

7.
We have discovered a reporter gene insertion that is expressed in the trunk region of Drosophila embryos. Genetic and molecular details of a new regulatory gene neighboring the reporter gene insertion, which we call teashirt (tsh), are described. In situ hybridization of a tsh probe to embryos shows that this gene is expressed in a way similar to the reporter gene. Mutations of tsh show that the gene is required for normal development of the ventral trunk region of embryos, which correlates with the spatial expression of the gene in the anteroposterior axis but not in the dorsoventral axis. Sequencing of a tsh cDNA shows that the putative protein possesses three distantly spaced CX2CX12HX5H zinc finger motifs.  相似文献   

8.
D F Woods  P J Bryant 《Cell》1991,66(3):451-464
Mutations of the lethal(1)discs large-1 (dlg) tumor suppressor gene of Drosophila cause neoplastic overgrowth of the imaginal discs. Sequencing of a near full-length cDNA predicts a protein containing a domain homologous to yeast guanylate kinase and a region homologous to SH3, a putative regulatory motif in nonreceptor protein tyrosine kinases and other signal transduction proteins. Immunofluorescence analysis using antibodies directed against fusion peptides shows that the dlg gene product is localized in an apical belt of the lateral cell membrane, at the position of the septate junction. The results suggest that a signal transduction process involving guanine nucleotides occurs at the septate junction and is necessary for cell proliferation control in Drosophila epithelia.  相似文献   

9.
10.
11.
12.
Fruit flies are attracted by a diversity of odors that signal the presence of food, potential mates, or attractive egg-laying sites. Most Drosophila olfactory neurons express two types of odorant receptor genes: Or83b, a broadly expressed receptor of unknown function, and one or more members of a family of 61 selectively expressed receptors. While the conventional odorant receptors are highly divergent, Or83b is remarkably conserved between insect species. Two models could account for Or83b function: it could interact with specific odor stimuli independent of conventional odorant receptors, or it could act in concert with these receptors to mediate responses to all odors. Our results support the second model. Dendritic localization of conventional odorant receptors is abolished in Or83b mutants. Consistent with this cellular defect, the Or83b mutation disrupts behavioral and electrophysiological responses to many odorants. Or83b therefore encodes an atypical odorant receptor that plays an essential general role in olfaction.  相似文献   

13.
The Drosophila insulin receptor (DIR) contains a 368-amino-acid COOH-terminal extension that contains several tyrosine phosphorylation sites in YXXM motifs. This extension is absent from the human insulin receptor but resembles a region in insulin receptor substrate (IRS) proteins which binds to the phosphatidylinositol (PI) 3-kinase and mediates mitogenesis. The function of a chimeric DIR containing the human insulin receptor binding domain (hDIR) was investigated in 32D cells, which contain few insulin receptors and no IRS proteins. Insulin stimulated tyrosine autophosphorylation of the human insulin receptor and hDIR, and both receptors mediated tyrosine phosphorylation of Shc and activated mitogen-activated protein kinase. IRS-1 was required by the human insulin receptor to activate PI 3-kinase and p70s6k, whereas hDIR associated with PI 3-kinase and activated p70s6k without IRS-1. However, both receptors required IRS-1 to mediate insulin-stimulated mitogenesis. These data demonstrate that the DIR possesses additional signaling capabilities compared with its mammalian counterpart but still requires IRS-1 for the complete insulin response in mammalian cells.  相似文献   

14.
Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the “critical size” (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.  相似文献   

15.
CD38 is a multifunctional protein possessing ADP-ribosyl cyclase activity responsible for both the synthesis and the degradation of several Ca(2+)-mobilizing second messengers. Although a variety of functions have been ascribed to CD38, such as immune responses, insulin secretion, and social behavior in adults, nothing is known of its role during embryonic development when Ca(2+) signals feature prominently. Here, we report the identification and functional expression of CD38 from Xenopus laevis, a key model organism for the study of vertebrate development. We show that CD38 expression and endogenous ADP-ribosyl cyclase activity are developmentally regulated during cellular differentiation. Chemical or molecular inhibition of CD38 abolished ADP-ribosyl cyclase activity and disrupted elongation of the anterior-posterior axis and differentiation of skeletal muscle, culminating in embryonic death. Our data uncover a previously unknown role for CD38 as an essential regulator of embryonic development.  相似文献   

16.
Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.  相似文献   

17.
The NCK adaptor proteins are composed entirely of SH3 and SH2 domains and serve as protein interaction bridges for several receptors during signal transduction events. Here we report the molecular and genetic analysis of the Caenorhabditis elegans nck-1 gene. C. elegans nck-1 encodes two isoforms: NCK-1A and a shorter isoform that lacks the first SH3 domain, NCK-1B. C. elegans nck-1 mutants exhibit defects in axon guidance and neuronal cell position, as well as defects in the excretory canal cell, gonad, and male mating. NCK-1 is broadly expressed in neurons and epithelial cells with NCK-1B being the most abundant isoform. NCK-1A and NCK-1B share a similar expression pattern in parts of the nervous system, but also have independent expression patterns in other tissues. Interestingly, NCK-1B is localized to the nuclei of many cells. Genetic rescue experiments show that NCK-1 functions cell autonomously and, in general, either NCK-1A or NCK-1B is sufficient to function in axon guidance. However, there appears to be specific roles for each isoform, for example NCK-1B is required for HSN cell migration while NCK-1A is required for efficient male mating. Genetic epistasis experiments show that NCK-1 functions redundantly with the LAR Receptor Tyrosine Phosphatase, PTP-3, and the Netrin receptor UNC-40.  相似文献   

18.
Arabidopsis fusca mutants display striking purple coloration due to anthocyanin accumulation in their cotyledons. We describe six recessive fusca mutants isolated from Agrobacterium-transformed Arabidopsis families. These mutants first become defective during embryogenesis and exhibit limited seedling development. Double mutant constructs revealed that developmental defects were not simply a consequence of anthocyanin accumulation. fusca seedlings showed altered responses to several environmental and endogenous factors. Allelism tests established that three fusca loci are represented by mutants previously described as defective in light-regulated responses. To study the molecular basis of the fusca phenotype, we cloned the FUS6 gene. FUS6 encodes a novel protein that is hydrophilic, alpha-helical, and contains potential protein kinase C phosphorylation sites. The FUSCA proteins appear to act in a network of signal transduction pathways critical for plant development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号