首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Invariant Valpha14(+) NKT cells are a specialized CD1-reactive T cell subset implicated in innate and adaptive immunity. We assessed whether Valpha14(+) NKT cells participated in the immune response against enteric Listeria monocytogenes infection in vivo. Using CD1d tetramers loaded with the synthetic lipid alpha-galactosylceramide (CD1d/alphaGC), we found that splenic and hepatic Valpha14(+) NKT cells in C57BL/6 mice were early producers of IFN-gamma (but not IL-4) after L. monocytogenes infection. Adoptive transfer of Valpha14(+) NKT cells derived from TCRalpha degrees Valpha14-Jalpha18 transgenic (TCRalpha degrees Valpha14Tg) mice into alymphoid Rag(null) gamma(c)(null) mice demonstrated that Valpha14(+) NKT cells were capable of providing early protection against enteric L. monocytogenes infection with systemic production of IFN-gamma and reduction of the bacterial burden in the liver and spleen. Rechallenge experiments demonstrated that previously immunized wild-type and Jalpha18null mice, but not TCRalpha(null) or TCRalpha(null) Valpha14Tg mice, were able to mount adaptive responses to L. monocytogenes. These data demonstrate that Valpha14(+) NKT cells are able to participate in the early response against enteric L. monocytogenes through amplification of IFN-gamma production, but are not essential for, nor capable of, mediating memory responses required to sterilize the host.  相似文献   

2.
A novel mouse model for invariant NKT cell study   总被引:1,自引:0,他引:1  
We have generated a novel mouse model harboring the in-frame rearranged TCRValpha specific for invariant NKT (iNKT) cells (Valpha14-Jalpha18) on one allele by crossing the mouse cloned from NKT cells with wild-type mice. This genomic configuration would ensure further rearrangement and expression of TCRValpha14-Jalpha18 under the endogenous promoters and enhancers. Mice harboring such an in-frame rearranged TCRValpha (Valpha14-Jalpha18 mouse) possessed an increase in iNKT cells in the thymus, liver, spleen, and bone marrow. Intriguingly, both Th1- and Th2-type cytokines were produced upon stimulation with alphaGalactosylceramide, an agonist of iNKT cells, and the IgE level in the serum remained unaffected in the Valpha14-Jalpha18 mouse. These features markedly distinguish the nature of iNKT cells present in the Valpha14-Jalpha18 mouse from that of iNKT cells found in the Valpha14-Jalpha18 transgenic mouse. Besides these, the expression of TCRVgammadelta cells remained intact, and the use of the TCRVbeta repertoire in iNKT cells was highly biased to TCRVbeta8 in the Valpha14-Jalpha18 mouse. Furthermore, alphaGalactosylceramide-CD1d dimer-reactive immature iNKT cells expressed less Rag2 as compared with the conventional immature T cells at the positive selection stage. Cell cycle analysis on the thymocytes revealed that no particular subset proliferated more vigorously than the others. Crossing the Valpha14-Jalpha18 mouse with the CD1d knockout mouse revealed a novel population of iNKT cells whose coreceptor expression profile was similar to that assigned to iNKT precursor cells. These mice will be useful for the study on the development of iNKT cells as well as on their functions in the immune system.  相似文献   

3.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

4.
Invariant NKT cells are CD1d-restricted T cells specific for glycolipid Ags. Their activation or transgenic enrichment abrogates the development of experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate that in NKT-enriched mice the protection from EAE is associated with the infiltration of NKT cells in the CNS and the local expression of CD1d. This indicates that the CNS acquires the potential for local glycolipid presentation when exposed to inflammatory stress, permitting the triggering of NKT cells. To address the importance of CD1d-mediated Ag presentation, we used transgenic mice that express CD1d solely in the thymus. Interestingly, enrichment of NKT cells in these mice also conferred resistance to EAE, with an efficacy indistinguishable from that of NKT-enriched CD1d-sufficient mice. This protection was due to an abrogation of the encephalitogenic Th1 and Th17 response in the spleen, revealing that endogenous glycolipid presentation is dispensable for the regulatory function of NKT cells in EAE. Moreover, abrogating extrathymic CD1d expression failed to affect both the recruitment of NKT cells and their effector phenotype. CNS-infiltrating NKT cells were characterized by a cytotoxic IFN-gamma(high)IL-4(low)IL-10(low)granzyme B(high) profile, irrespective of the local expression of CD1d. Glycolipid Ag presentation is therefore dispensable for the control of autoimmune demyelination by NKT cells, underlining the importance of alternative cognate and/or soluble factors in the control of NKT cell function.  相似文献   

5.
Experimental autoimmune encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease that can be protected against by stimulating regulatory cells. Here we examined whether EAE can be purposefully modulated by stimulating Valpha14 NK T cells with the CD1d-restricted ligand alpha-galactosylceramide (alpha-GC). EAE induced in wild-type C57BL/6 (B6) mice was not appreciably altered by injection of alpha-GC. However, EAE induced in IL-4 knockout mice and IFN-gamma knockout mice was enhanced or suppressed by alpha-GC, respectively. This indicates that the IL-4 and IFN-gamma triggered by alpha-GC may play an inhibitory or enhancing role in the regulation of EAE. We next studied whether NK T cells of wild-type mice may switch their Th0-like phenotype toward Th1 or Th2. Notably, in the presence of blocking B7.2 (CD86) mAb, alpha-GC stimulation could bias the cytokine profile of NK T cells toward Th2, whereas presentation of alpha-GC by CD40-activated APC induced a Th1 shift of NK T cells. Furthermore, transfer of the alpha-GC-pulsed APC preparations suppressed or enhanced EAE according to their ability to polarize NK T cells toward Th2 or Th1 in vitro. These results have important implications for understanding the role of NK T cells in autoimmunity and for designing a therapeutic strategy targeting NK T cells.  相似文献   

6.
CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.  相似文献   

7.
A role for regulatory lymphocytes has been demonstrated in the pathogenesis of type 1 diabetes in the NOD mouse but the nature of these cells is debated. CD1d-restricted NKT lymphocytes have been implicated in this process. Previous reports of reduced diabetes incidence in NOD mice in which the numbers of NKT cells are artificially increased have been attributed to the enhanced production of IL-4 by these cells and a role for classical NKT cells, using the Valpha14-Jalpha18 rearrangement. We now show that overexpression in NOD mice of CD1d-restricted TCR Valpha3.2(+)Vbeta9(+) NKT cells producing high levels of IFN-gamma but low amounts of IL-4 leads to prevention of type 1 diabetes, demonstrating a role for nonclassical CD1d-restricted NKT cells in the regulation of autoimmune diabetes.  相似文献   

8.
Valpha14 NKT cells produce large amounts of IFN-gamma and IL-4 upon recognition of their specific ligand alpha-galactosylceramide (alpha-GalCer) by their invariant TCR. We show here that NKT cells constitutively express CD28, and that blockade of CD28-CD80/CD86 interactions by anti-CD80 and anti-CD86 mAbs inhibits the alpha-GalCer-induced IFN-gamma and IL-4 production by splenic Valpha14 NKT cells. On the other, the blockade of CD40-CD154 interactions by anti-CD154 mAb inhibited alpha-GalCer-induced IFN-gamma production, but not IL-4 production. Consistent with these findings, CD28-deficient mice showed impaired IFN-gamma and IL-4 production in response to alpha-GalCer stimulation in vitro and in vivo, whereas production of IFN-gamma but not IL-4 was impaired in CD40-deficient mice. Moreover, alpha-GalCer-induced Th1-type responses, represented by enhanced cytotoxic activity of splenic or hepatic mononuclear cells and antimetastatic effect, were impaired in both CD28-deficient mice and CD40-deficient mice. In contrast, alpha-GalCer-induced Th2-type responses, represented by serum IgE and IgG1 elevation, were impaired in the absence of the CD28 costimulatory pathway but not in the absence of the CD40 costimulatory pathway. These results indicate that CD28-CD80/CD86 and CD40-CD154 costimulatory pathways differentially contribute to the regulation of Th1 and Th2 functions of Valpha14 NKT cells in vivo.  相似文献   

9.
Invariant Valpha14 (Valpha14i) NKT cells are a murine CD1d-dependent regulatory T cell subset characterized by a Valpha14-Jalpha18 rearrangement and expression of mostly Vbeta8.2 and Vbeta7. Whereas the TCR Vbeta domain influences the binding avidity of the Valpha14i TCR for CD1d-alpha-galactosylceramide complexes, with Vbeta8.2 conferring higher avidity binding than Vbeta7, a possible impact of the TCR Vbeta domain on Valpha14i NKT cell selection by endogenous ligands has not been studied. In this study, we show that thymic selection of Vbeta7(+), but not Vbeta8.2(+), Valpha14i NKT cells is favored in situations where endogenous ligand concentration or TCRalpha-chain avidity are suboptimal. Furthermore, thymic Vbeta7(+) Valpha14i NKT cells were preferentially selected in vitro in response to CD1d-dependent presentation of endogenous ligands or exogenously added self ligand isoglobotrihexosylceramide. Collectively, our data demonstrate that the TCR Vbeta domain influences the selection of Valpha14i NKT cells by endogenous ligands, presumably because Vbeta7 confers higher avidity binding.  相似文献   

10.
In the present report, we characterize a novel T cell subset that shares with the NKT cell lineage both CD1d-restriction and high reactivity in vivo and in vitro to the alpha-galactosylceramide (alpha-GalCer) glycolipid. These cells preferentially use the canonical Valpha14-Jalpha281 TCR-alpha-chain and Vbeta8 TCR-beta segments, and are stimulated by alpha-GalCer in a CD1d-dependent fashion. However, in contrast to classical NKT cells, they lack the NK1.1 marker and express high surface levels of CD1d molecules. In addition, this NK1.1(-) CD1d(high) T subset, further referred to as CD1d(high) NKT cells, can be distinguished by its unique functional features. Although NK1.1(+) NKT cells require exogenous CD1d-presenting cells to make them responsive to alpha-GalCer, CD1d(high) NKT cells can engage their own surface CD1d in an autocrine and/or paracrine manner. Furthermore, in response to alpha-GalCer, CD1d(high) NKT cells produce high amounts of IL-4 and moderate amounts of IFN-gamma, a cytokine profile more consistent with a Th2-like phenotype rather than the Th0-like phenotype typical of NK1.1(+) NKT cells. Our work reveals a far greater level of complexity within the NKT cell population than previously recognized and provides the first evidence for T cells that can be activated upon TCR ligation by CD1d-restricted recognition of their ligand in the absence of conventional APCs.  相似文献   

11.
To elucidate the role of NKT cells in the host defense to cryptococcal infection, we examined the proportion of these cells, identified by the expression of CD3 and NK1.1, in lungs after intratracheal infection with Cryptococcus neoformans. This population increased on day 3 after infection, reached a peak level on days 6-7, and decreased thereafter. In Valpha14 NKT cell-deficient mice, such increase was significantly attenuated. The proportion of Valpha14 NKT cells, detected by binding to alpha-galactosylceramide-loaded CD1d tetramer, and the expression of Valpha14 mRNA increased after infection with a similar kinetics. The delayed-type hypersensitivity response and differentiation of the fungus-specific Th1 cells was reduced in Valpha14 NKT cell-deficient mice, compared with control mice. Additionally, elimination of this fungal pathogen from lungs was significantly delayed in Valpha14 NKT cell-deficient mice. Production of monocyte chemoattractant protein (MCP)-1 in lungs, detected at both mRNA and protein levels, increased on day 1, reached a peak level on day 3, and decreased thereafter, which preceded the increase in NKT cells. Finally, the increase of total and Valpha14(+) subset of NKT cells after infection was significantly reduced in MCP-1-deficient mice. Our results demonstrated that NKT cells, especially Valpha14(+) subset, accumulated in a MCP-1-dependent manner in the lungs after infection with C. neoformans and played an important role in the development of Th1 response and host resistance to this fungal pathogen.  相似文献   

12.
13.
NKT cells express both NK cell-associated markers and TCR. Classically, these NK1.1+TCRalphabeta+ cells have been described as being either CD4+CD8- or CD4-CD8-. Most NKT cells interact with the nonclassical MHC class I molecule CD1 through a largely invariant Valpha14-Jalpha281 TCR chain in conjunction with either a Vbeta2, -7, or -8 TCR chain. In the present study, we describe the presence of significant numbers of NK1.1+TCRalphabeta+ cells within lymphokine-activated killer cell cultures from wild-type C57BL/6, CD1d1-/-, and Jalpha281-/- mice that lack classical NKT cells. Unlike classical NKT cells, 50-60% of these NK1.1+TCRalphabeta+ cells express CD8 and have a diverse TCR Vbeta repertoire. Purified NK1.1-CD8alpha+ T cells from the spleens of B6 mice, upon stimulation with IL-2, IL-4, or IL-15 in vitro, rapidly acquire surface expression of NK1.1. Many NK1.1+CD8+ T cells had also acquired expression of Ly-49 receptors and other NK cell-associated molecules. The acquisition of NK1.1 expression on CD8+ T cells was a particular property of the IL-2Rbeta+ subpopulation of the CD8+ T cells. Efficient NK1.1 expression on CD8+ T cells required Lck but not Fyn. The induction of NK1.1 on CD8+ T cells was not just an in vitro phenomenon as we observed a 5-fold increase of NK1.1+CD8+ T cells in the lungs of influenza virus-infected mice. These data suggest that CD8+ T cells can acquire NK1.1 and other NK cell-associated molecules upon appropriate stimulation in vitro and in vivo.  相似文献   

14.
Human Valpha24(+) NKT cells constitute a counterpart of mouse Valpha14(+) NKT cells, both of which use an invariant TCR-alpha chain. The human Valpha24(+) NKT cells as well as mouse Valpha14(+) NKT cells are activated by glycolipids in a CD1d-restricted manner and produce many immunomodulatory cytokines, possibly affecting the immune balance. In mice, it has been considered from extensive investigations that Valpha14(+)CD8(+) NKT cells that express invariant TCR do not exist. Here we introduce human Valpha24(+)CD8(+) NKT cells. These cells share important features of Valpha24(+) NKT cells in common, but in contrast to CD4(-)CD8(-) (double-negative) or CD4(+) Valpha24(+) NKT cells, they do not produce IL-4. Our discovery may extend and deepen the research field of Valpha24(+) NKT cells as well as help to understand the mechanism of the immune balance-related diseases.  相似文献   

15.
We have previously demonstrated that alpha-mannosyl ceramide and its derivatives promote immune responses of NK1.1(+) invariant Valpha19-Jalpha33 T cell receptor (TCR) alpha(+) T cells (Valpha19 NKT cells). In this study, attempts were made to determine the structural requirements for natural ligands for Valpha19 NKT cells. Naturally occurring and synthetic glycolipids were analyzed for their ability to stimulate the cells prepared from invariant Valpha19-Jalpha33 TCR transgenic mice, in which development of Valpha19 NKT cells is facilitated. As a result, alpha-mannosyl phosphatidylinositols such as 2,6-di-alpha-mannosyl phosphatidylinositol and alpha-mannosyl-4alpha-glucosaminyl-6-phosphatidylinositol (alpha-Man-GlcNH(2)-PtdIns) as well as alpha-mannosyl ceramide derivatives were found to activate the cells from the transgenic mouse liver, gut lamina propria and spleen in vivo and in vitro. Thus, glycolipids with nonreducing end alpha-mannosyl residues are suggested to be potent antigens for Valpha19 NKT cells. Next, a series of invariant Valpha19-Jalpha33 TCR(+) hybridomas, each with variations in the sequence of the Valpha-Jalpha junction and the TCR beta chain, were tested for responsiveness toward the alpha-mannosyl glycolipids. A loose correlation between the primary structure of the TCR and the reactive glycolipids was observed. For instance, hybridomas expressing TCRs consisting of an alpha chain with a variation in the Valpha19-Jalpha33 junction and a Vbeta6(+)beta chain showed affinity towards alpha-mannosyl ceramide and alpha-Man-GlcNH(2)-PtdIns, whereas those expressing TCRs with an invariant Valpha19-Jalpha33 alpha chain and a Vbeta8(+)beta chain responded to 2,6-di-alpha-mannosyl phosphatidylinositol. Thus, it is suggested that Valpha19 NKT cells with microheterogeneity in the TCR structure have been generated for defense against various antigens expressing alpha-mannosyl glycolipids.  相似文献   

16.
17.
NK1.1+ T cells in the mouse thymus and bone marrow were compared because some marrow NK1.1+ T cells have been reported to be extrathymically derived. Almost all NK1.1+ T cells in the thymus were depleted in the CD1-/-, beta2m-/-, and Jalpha281-/- mice as compared with wild-type mice. CD8+NK1.1+ T cells were not clearly detected, even in the wild-type mice. In bone marrow from the wild-type mice, CD8+NK1.1+ T cells were easily detected, about twice as numerous as CD4+NK1.1+ T cells, and were similar in number to CD4-CD8-NK1.1+ T cells. All three marrow NK1.1+ T cell subsets were reduced about 4-fold in CD1-/- mice. No reduction was observed in CD8+NK1.1+ T cells in the bone marrow of Jalpha281-/- mice, but marrow CD8+NK1.1+ T cells were markedly depleted in beta2m-/- mice. All NK1.1+ T cell subsets in the marrow of wild-type mice produced high levels of IFN-gamma, IL-4, and IL-10. Although the numbers of marrow CD4-CD8-NK1.1+ T cells in beta2m-/- and Jalpha281-/- mice were similar to those in wild-type mice, these cells had a Th1-like pattern (high IFN-gamma, and low IL-4 and IL-10). In conclusion, the large majority of NK1.1+ T cells in the bone marrow are CD1 dependent. Marrow NK1.1+ T cells include CD8+, Valpha14-Jalpha281-, and beta2m-independent subsets that are not clearly detected in the thymus.  相似文献   

18.
Airway hyperreactivity (AHR), eosinophilic inflammation with a Th2-type cytokine profile, and specific Th2-mediated IgE production characterize allergic asthma. In this paper, we show that OVA-immunized Jalpha18(-/-) mice, which are exclusively deficient in the invariant Valpha14(+) (iValpha14), CD1d-restricted NKT cells, exhibit impaired AHR and airway eosinophilia, decreased IL-4 and IL-5 production in bronchoalveolar lavage fluid, and reduced OVA-specific IgE compared with wild-type (WT) littermates. Adoptive transfer of WT iValpha14 NKT cells fully reconstitutes the capacity of Jalpha18(-/-) mice to develop allergic asthma. Also, specific tetramer staining shows that OVA-immunized WT mice have activated (CD69(+)) iValpha14 NKT cells. Importantly, anti-CD1d mAb treatment blocked the ability of iValpha14 T cells to amplify eosinophil recruitment to airways, and both Th2 cytokine and IgE production following OVA challenge. In conclusion, these findings clearly demonstrate that iValpha14 NKT cells are required to participate in allergen-induced Th2 airway inflammation through a CD1d-dependent mechanism.  相似文献   

19.
CD1d tetramers loaded with alpha-galactosylceramide (alpha-GalCer) bind selectively to mouse invariant Valpha14 (Valpha14i) NKT cells and their human counterparts. Whereas tetramer binding strictly depends on the expression of a Valpha14-Jalpha18 chain in murine NKT cells, the associated beta-chain (typically expressing Vbeta8.2 or Vbeta7) appears not to influence tetramer binding. In this study, we describe novel alpha-GalCer-loaded mouse and human CD1d-IgG1 dimers, which revealed an unexpected influence of the TCR-beta chain on the avidity of CD1d:alpha-GalCer binding. A subset of Valpha14i NKT cells clearly discriminated alpha-GalCer bound to mouse or human CD1d on the basis of avidity differences conferred by the Vbeta domain of the TCR-beta chain, with Vbeta8.2 conferring higher avidity binding than Vbeta7.  相似文献   

20.
Niemann-Pick type C1 (NPC1) is a late endosomal/lysosomal transmembrane protein involved in the cellular transport of glycosphingolipids and cholesterol that is mutated in a majority of patients with Niemann-Pick C neurodegenerative disease. We found that NPC1-deficient mice lacked Valpha14-Jalpha18 NKT cells, a major population of CD1d-restricted T cells that is conserved in humans. NPC1-deficient mice also exhibited marked defects in the presentation of Sphingomonas cell wall Ags to NKT cells and in bacterial clearance in vivo. A synthetic fluorescent alpha-glycosylceramide analog of the Sphingomonas Ag trafficked to the lysosome of wild-type cells but accumulated in the late endosome of NPC1-deficient cells. These findings reveal a blockade of lipid trafficking between endosome and lysosome as a consequence of NPC1 deficiency and suggest a common mechanism for the defects in lipid presentation and development of Valpha14-Jalpha18 NKT cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号