首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histones are vital structural proteins of chromatin that influence its dynamics and function. The tissue-specific expression of histone variants has been shown to regulate the expression of specific genes and genomic stability in animal systems. Here we report on the characterization of five histone H3 variants expressed in Lilium generative cell. The gcH3 and leH3 variants show unique sequence diversity by lacking a conserved lysine residue at position 9 (H3K9). The gH3 shares conserved structural features with centromeric H3 of Arabidopsis. The gH3 variant gene is strongly expressed in generative cells and gH3 histone is incorporated in to generative cell chromatin. The lysine residue of H3 at position 4 (H3K4) is highly methylated in the nuclei of generative cells of mature pollen, while methylation of H3K4 is low in vegetative cell nuclei. Taken together, these results suggest that male gametic cells of Lilium have unique chromatin state and histone H3 variants and their methylation might be involved in gene regulation of male gametic cells.Accession numbers for the sequence data The sequences reported in this paper have been deposited in the DDBJ database gcH3 GC1174 (accession no. AB195644), gH3 GC1008 (accession no. AB195646), leH3 GC1126 (accession no. AB195648), soH3-1 GC0075 (accession no. AB195650), soH3-2 GC1661 (accession no. AB195652), genomic sequence of gcH3 (accession no. AB195645), genomic sequence of gH3 (accession no. AB195647), genomic sequence of leH3 (accession no. AB195649), genomic sequence of soH3-2 (accession no. AB195651), genomic sequence of soH3-2 (accession no. AB195653).  相似文献   

2.
Development of male gametes in flowering plants   总被引:3,自引:0,他引:3  
The male gametes of angiosperms consist of two sperm cells within a pollen grain or a pollen tube. They are derived from a single generative cell, which is formed as the smaller cell by unequal cell division in the microspore after meiosis. Limited information is available about these male gametic cells, beyond observations by electron microscopy, because each is surrounded by the cytoplasm of a larger vegetative cell. Recently, large quantities of generative cells and sperm cells have been isolated from pollen grains or pollen tubes of various plant species, and their physiological, biochemical and molecular characterization is now possible. Although almost all the available results are still preliminary, it is evident that the male gametic cells are peculiar in terms both of cell structure and composition. For example, they are rich in axial microtubules which maintain the spindle-like shape of each cell. However, they lack plastids which are DNA-containing cytoplasmic organelles. Biochemical characterization of their proteins indicates the presence of male gamete-specific polypeptides. These findings suggest, not unexpectedly, the possibility of male gamete-specific gene expression and of a strict genetic mechanism that controls the formation of male gametes.  相似文献   

3.
4.
5.
Male gametic cell-specific expression of H2A and H3 histone genes   总被引:10,自引:0,他引:10  
  相似文献   

6.
7.
A genomic clone containing the gH2A gene, a histone variant specifically expressed in male gametic cells within the pollen of Lilium longiflorum, was isolated. Sequence analysis revealed that the coding region of the gene is interrupted by one intron, as is the case with the somatic type of plant histone H2A genes, suggesting derivation from the same ancestral gene containing one intron. In addition, a 2.8-kbp fragment of the 5′ upstream region of gH2A contained TATA and CAAT boxes, but neither a plant histone-specific regulatory DNA element nor vegetative cell-specific cis-elements were found. A histochemical study of stable transformants demonstrated that the 5′ upstream region of the gene can drive gene expression specifically in the generative cell of pollen; no activity was detectable in the vegetative cell or in other reproductive and vegetative tissues of transgenic Nicotiana tabacum. These results strongly suggest that the generative cell can direct specific gene expression, that this expression may be regulated by a putative male gametic factor, and that the gH2A promoter may therefore serve as a useful male gametic cell fate marker in angiosperms.  相似文献   

8.
Two sperm cells are required to achieve double fertilization in flowering plants (angiosperms). In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and are transported to the female gametes (egg and central cell) via the pollen tube. The two sperm cells arise from the generative pollen cell either within the pollen grain or after germination inside the pollen tube. While pollen tube growth and sperm behavior has been intensively investigated in model plant species such as tobacco and lily, little is know about sperm dynamics and behavior during pollen germination, tube growth and sperm release in grasses. In the March issue of Journal of Experimental Botany, we have reported about the sporophytic and gametophytic control of pollen tube germination, growth and guidance in maize.1 Five progamic phases were distinguished involving various prezygotic crossing barriers before sperm cell delivery inside the female gametophyte takes place. Using live cell imaging and a generative cell-specific promoter driving α-tubulin-YFP expression in the male germline, we report here the formation of the male germline inside the pollen grain and the sperm behaviour during pollen germination and their movement dynamics during tube growth in maize.Key words: male gametophyte, generative cell, sperm, pollen tube, tubulin, fertilization, maize  相似文献   

9.
The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in plant reproduction, relatively little is known about the molecular mechanisms controlling germ cell proliferation and specification. Here, we investigate the role of the Arabidopsis male germline-specific Myb protein DUO POLLEN1, DUO1, as a positive regulator of male germline development. We show that DUO1 is required for correct male germ cell differentiation including the expression of key genes required for fertilisation. DUO1 is also necessary for male germ cell division, and we show that DUO1 is required for the germline expression of the G2/M regulator AtCycB1;1 and that AtCycB1:1 can partially rescue defective germ cell division in duo1. We further show that the male germline-restricted expression of DUO1 depends upon positive promoter elements and not upon a proposed repressor binding site. Thus, DUO1 is a key regulator in the production of functional sperm cells in flowering plants that has a novel integrative role linking gametic cell specification and cell cycle progression.  相似文献   

10.
11.
12.
13.
14.
15.
16.
In contrast to animals, the plant male germline is established after meiosis in distinctive haploid structures, termed pollen grains. The germline arises by a distinct asymmetric division of the meiotic products . The fates of the resulting vegetative and generative cells are distinct. In contrast to the larger vegetative cell, arrested in the G1 phase of the cell cycle, the smaller generative cell divides once to produce the two male gametes or sperm cells. Sperm cells are delivered to the female gametes by the pollen tube, which develops from the vegetative cell. In spite of recent efforts to understand pollen development , the molecular pathway controlling sperm-cell ontogenesis is unknown. Here, we present the isolation of DUO1, a novel R2R3 MYB gene of Arabidopsis, as the first gene shown to control male gamete formation in plants. DUO1 is specifically expressed in the male germline, and DUO1 protein accumulates in sperm-cell nuclei. Mutations in DUO1 produce a single larger diploid sperm cell unable to perform fertilization. DUO1 appears to be evolutionarily conserved in several plant species and defines a new subfamily of pollen-specific MYB genes.  相似文献   

17.
One key objective in evolutionary ecology is to understand the magnitude of inbreeding depression expressed across sex‐specific components of fitness. One major component of male fitness is fertilization success, which depends on male gametic performance (sperm and pollen performance in animals and plants, respectively). Inbreeding depression in male gametic performance could create sex‐specific inbreeding depression in fitness, increase the benefit of inbreeding avoidance and reduce the efficacy of artificial insemination and pollination. However, there has been no assessment of the degree to which inbreeding generally depresses male gametic performance and hence post‐copulatory or post‐pollination fertilization success. Because inbreeding depression is understood to be a property of diploid entities, it is not clear what degree of inbreeding depression in haploid gametic performance should be expected. Here, we first summarize how inbreeding depression in male gametic performance could potentially arise through gene expression in associated diploid cells and/or reduced genetic diversity among haploid gametes. We then review published studies that estimate the magnitude of inbreeding depression in traits measuring components of sperm or pollen quantity, quality and competitiveness. Across 51 published studies covering 183 study traits, the grand mean inbreeding load was approximately one haploid lethal equivalent, suggesting that inbreeding depresses male gametic performance across diverse systems and traits. However, there was an almost complete lack of explicit estimates from wild populations. Future studies should quantify inbreeding depression in systematic sets of gametic traits under naturally competitive and noncompetitive conditions and quantify the degree to which gamete phenotypes and performance reflect haploid vs. diploid gene expression.  相似文献   

18.
19.
During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号