首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity of selected commercial formulations of neem on Tetranychus urticae Koch (Acari: Tetranychidae) and two predatory mites Euseius alatus De Leon and Phytoseiulus macropilis (Banks) was studied. Topical toxicity was tested with the commercial formulations (Natuneem, Neemseto and Callneem) and extract of neem's seeds at concentration 1%, compared to the standard acaricide abamectin at concentration of 0.3 ml/L and the control treatment (distilled water). Based on the best performance against T. urticae through topical contact, the formulation Neemseto was selected to be evaluated using different concentrations against eggs, and residual and repellent effects on adults of the mites. Egg treatment consisted of dipping eggs into Neemseto dilutions and control treatment for five seconds. In addition, residual and repellent effects of Neemseto for adult mites consisted of using leaf discs dipped into the dilutions for five seconds. The toxicity of Neemseto on eggs and adults was greater for T. urticae compared to the toxicity observed for the predatory mites. Neemseto was repellent for T. urticae and E. alatus when tested at the concentrations of 0.25, 0.50 and 1.0%, and did not affect P. macropilis. Neemseto using all concentrations, while for the predatory mites significant reduction of mite fecundity was only observed at the largest concentrations reduced the fecundity of T. urticae significantly. So Neemseto, among tested neem formulations, performed better against the twospotted spider mite and exhibited relatively low impact against the predatory mites studied.  相似文献   

2.
Methods for measuring prevalence of Neozygites floridana in a Tetranychus urticae population collected from strawberries were developed and compared. T. urticae were extracted from leaves using a soapy water solution (0.5 ml washing detergent : 8 L water) and then placed into 80% alcohol for use in Methods 1 and 2. Method 1: N. floridana-sporulating T. urticae cadavers were observed and quantified under a compound microscope (40-80x). Method 2: Adult females were mounted in lactophenol cotton blue and observed for the presence or absence of N. floridana hyphal bodies under a microscope (200-400x). Method 3: Live T. urticae females were incubated at 25 degrees C and 75% RH and observed for mortality and N. floridana infection under a compound microscope (6.4-40x). Method 1 was the most time-efficient method and it also allows processing of samples as time permits. Method 2 quantified significantly higher fungal prevalence than Methods 1 and 3, but Method 2 is not considered to be reliable because hyphal bodies are difficult to detect. No significant differences were found between Methods 1 and 3.  相似文献   

3.
Laboratory bioassays were conducted to characterize the activity of the insecticide spinosad against the twospotted spider mite, Tetranychus urticae Koch, and European red mite, Panonychus ulmi (Koch) (Acari: Tetranychidae). T. urticae females and larvae were individually placed on bean, Phaseolus vulgaris L. (Fabaceae), leaf disks treated with four rates of spinosad (25, 55, 121, and 266 ppm) and a water control. Significantly fewer T. urticae completed development on any spinosad rates (<15%) compared with the control (>85%), whereas spinosad exhibited no significant effects on P. ulmi development; 72.5 and 83.1% of P. ulmi completed development on apple (Malus pumila P. Mill, Rosaceae) leaf disks treated with 75 ppm spinosad and the control, respectively. T. urticae adult females placed on spinosad-treated disks had significantly higher mortality and lower oviposition rates compared with the water control; no significant mortality effects were observed until 3 d after placing adults on leaf disks. In choice tests where half of a bean leaf was treated with 55 ppm spinosad transversally or longitudinally, T. urticae females were repelled by spinosad and largely oviposited and fed on nonspinosad treated areas. Spinosad did not affect the behavior of P. ulmi females. When T. urticae females were released on potted bean plants (two-leaf stage) in which leaves received spinosad sprays on the adaxial or abaxial leaf surfaces, or complete spinosad coverage on one or two of the leaves, mite population increase lagged significantly behind those released on control plants. These results indicate that spinosad has significant acaricidal effects against T. urticae but not P. ulmi.  相似文献   

4.
The objective of this study was to determine whether differences in hairiness of tomato plants affect the functional and numerical response of the predator Neoseiulus californicus McGregor attacking the two-spotted spider mite, Tetranychus urticae Koch. Two tomato hybrids with different density of glandular hairs were used. The functional response was measured by offering eggs and adults of T urticae at densities ranging from 4 to 64 items per tomato leaflet (surface ca. 6.3 cm2); eggs were offered to predator protonymphs and deutonymphs, adult spider mites to adult predators. The number of spider mites eaten as a function of initial density was fitted to the disc equation. Predator densities were regressed against initial prey densities to analyze the numerical response. The number of eggs and adults of T. urticae eaten by N. californicus was extremely low in both hybrids. The nymphal stage of N. californicus and prey density had a significant effect on the number of T urticae eggs eaten by the predator, while hybrid had no effect. The functional response fitted reasonably well to the Holling model. The handling time (Th) and the attack rate (a) were very similar among the two hybrids. The numerical response indicated that the absolute density of predators increased with changes in spider mite densities but the relative predator/prey density decreased in both hybrids. Tomato hairiness prevented N. californicus from exhibiting a strong numerical response and the predator functional response was much lower than observed in other host plants and other phytoseiids. This result shows the need to consider plant attributes as an essential and interactive component of biological control practices.  相似文献   

5.
Management for twospotted spider mite, Tetranychus urticae Koch, populations in peanut, Arachis hypogaea L., relies on acaricides. The outcomes of acaricide applications are most predictable when complete information on their toxicity and specificity is available. Specifically, the degrees to which acaricides impact different stages of T. urticae and natural enemies combined determine the overall efficacy of an acaricide application. The objectives of this study were to determine stage-specific direct and residual efficacies of three acaricides (fenpropathrin, etoxazole, and propargite) against T. urticae, and the direct and residual toxicity of the acaricides to Orius insidiosus (Say) adults. Direct toxicity of acaricides to T. urticae was measured on peanut cuttings. All acaricide treatments caused significant mortality to a mixed stage population of T. urticae, and mortality did not differ among the acaricides 7 d after treatment. When toxicity to eggs was tested, the proportion of eggs that hatched for all acaricide treatments was significantly lower than the control, with etoxazole and propargite causing 100% mortality. Exposure to acaricide residues caused < 30% mortality of T. urticae adults 1 and 2 d after treatment and was not significantly different from the control. Fenpropathrin and propargite caused 100% mortality and etoxazole caused > 50% mortality of O. insidious adults after direct exposure to the acaricides. Residual toxicity of acaricides to O. insidiosus adults varied but remained toxic to O. insidiosus longer than to T. urticae. Fenpropathrin had the longest residual effect on O. insidiosus adults, causing > 95% mortality after 14 d; etoxazole and propargite caused < 30% mortality after 14 d.  相似文献   

6.
Previous reports indicate that applications of imidacloprid, a neonicotinoid insecticide, can lead to population buildups of twospotted spider mite, Tetranychus urticae Koch, in the field. Moreover, laboratory studies showed enhanced fecundity of T. urticae after an imidacloprid treatment. In this study, experiments were conducted in the greenhouse to investigate the potential effects of imidacloprid and several other neonicotinoid insecticides on fecundity, egg viability, preimaginal survivorship, and sex ratio of T. urticae (German strain WI) on French beans, Phaseolus vulgaris L. Four insecticides, i.e., imidacloprid (Confidor 200SL), thiacloprid (Calypso 480 SC), acetamiprid (Mospilan 70 WP), and thiamethoxam (Actara 25 WG), were tested at field-relevant (100, 120, 125, and 95 ppm) and sublethal doses (10, 12, 12.5, and 9.5 ppm), respectively. Both spray and drench applications were tested. At field-relevant doses, fecundity of T. urticae decreased and was lower in the treatments compared with the untreated control, whereas preimaginal survivorship and proportion of female offspring (i.e., sex ratio) were lower compared with the control. At sublethal doses, no significant differences were found among the treatments. Data on egg viability, preimaginal survivorship, and sex ratio at sublethal doses followed the same trends as at field-relevant doses. In an additional experiment, the metabolism of imidacloprid into monohydroxy-imidacloprid, olefine, guanidine, and 6-chloronicotinic acid was compared with the oviposition pattern of T. urticae. These findings are discussed with regard to previous laboratory and field observations of imidacloprid-induced fertility increases in T. urticae.  相似文献   

7.
Leaf samples were taken from 34 (1998) and 10 (1999) vineyards in five valleys in western Oregon to assess spider mite pests and biological control by predaceous phytoseiid mites. A leaf at a coordinate of every 10 m of border, 5 m into a vineyard, was taken to minimize edge effects; 20 leaves were taken at regular intervals from vineyard centers. Variables recorded at each site included grape variety and plant age, chemicals used, and vegetation next to vineyards. Sites were rated as occurring in agricultural versus riparian settings based on surrounding vegetation types. Multiple linear regressions and a computer genetic algorithm with an information content criterion were used to assess variables that may explain mite abundances. Typhlodromus pyri Scheuten was the dominant phytoseiid mite species and Tetranychus urticae Koch the dominant tetranychid mite species. High levels of T. urticae occurred when phytoseiid levels were low, and low levels of T. urticae were present when phytoseiid levels were high to moderate. T. urticae densities were higher in vineyards surrounded by agriculture, but phytoseiid levels did not differ between agricultural and riparian sites. Phytoseiids had higher densities on vineyard edges; T. urticae densities were higher in centers. Biological control success of pest mites was rated excellent in 11 of 44 vineyards, good in 27, and poor in only six sites. Predaceous mites appeared to be the principal agents regulating spider mites at low levels in sites where pesticides nontoxic to predators were used. Effects of surrounding vegetation, grape variety, growing region, and other factors on mites are discussed.  相似文献   

8.
Thirty-four essential oils were screened for their repellent activities against the twospotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae), at 0.1% concentration level using choice and no-choice laboratory bioassays. Of these, 20 essential oils showed significant repellencies against T. urticae in the choice tests. In subsequent no-choice tests using these 20 essential oils, only sandalwood oil showed significant repellency against T. urticae. Total number of eggs oviposited by T. urticae was significantly lower than controls in the choice tests when the kidney bean leaves were treated with 1 of 14 essential oils. The significant repellency of sandalwood oil against T. urticae lasted at least for 5 h at the 0.1% concentration level. Our GC-MS analysis indicated that the major components of the sandalwood oil were alpha-santalol (45.8%), beta-santalol (20.6%), beta-sinensal (9.4%), and epi-beta-santalol (3.3%). Santanol, a mixture of the two main components in the sandalwood oil, appears to be responsible for the repellency of sandalwood oil against T. urticae.  相似文献   

9.
The growth response of Staphylococcus xylosus strain CM21/3 to changes in temperature and water activity (glycerol concentration) was similar to that observed when water activity was adjusted by added NaCl. At each water activity level the effect of temperature on bacterial growth rate was described well by the square root model. T MIN (the notional minimum temperature for growth) was found to be constant and was similar to the value obtained for the same organism grown in media containing NaCl. Growth rate was proportional to glycerol concentration/water activity allowing the combined effect of this factor and temperature to be modelled by substitution of the constant b in the basic square root model by a term for water activity. The observed minimum water activity for growth at the optimum temperature was close to that predicted by the model.  相似文献   

10.
本文旨在探究二斑叶螨Tetranychus urticae为害对草莓Fragaria×ananassa Duch.叶片内过氧化氢(H2O2)、丙二醛(MDA)含量以及部分防御酶活性的影响。在草莓苗上接种不同数量(5~25头)的二斑叶螨,分别在接种后的24 h、48 h和72 h取样,分析草莓叶片内H2O2、MDA的含量以及部分防御酶的活性。结果显示,二斑叶螨为害的草莓叶片内H2O2和MDA的含量以及超氧化物歧化酶(SOD)的活性随着时间的延长而呈现先升后降的趋势,在二斑叶螨持续为害草莓叶片24 h、48 h和72 h时,受损草莓叶片中H2O2的含量均显著高于对照(P<0.05),不同密度二斑叶螨为害的草莓叶片中H2O2的含量均显著高于对照(P<0.05),但与取食时间关系不大。当为害时间达到48 h时,MDA的含量和SOD的活性均达到最高峰,此时它们均与二斑叶螨的密度密切相关。当二斑叶螨为25头/叶时,MDA的含量和SOD的活性分别约是对照的3.6倍和10倍。过氧化物酶(POD)和过氧化氢酶(CAT)的活性随时间延长不断升高,均在二斑叶螨为害72 h时达到最高峰。同时,二斑叶螨的为害时间和为害密度之间存在一定的交互作用。以上结果表明草莓叶片主要通过调节其体内H2O2和MDA的含量以及各种防御酶活性的变化,对二斑叶螨的为害产生应激反应。  相似文献   

11.
Walking activity, walking straightness, walking speed and searching efficiency of the predatory mite Phytoseiulus persimilis Athias-Henriot were measured on French bean leaf discs that were sprayed with either distilled water, or one of 0.25%, 0.50% and 1.00% w/w aqueous emulsions of an n C24 agricultural mineral oil (AMO). There was no significant difference in percentage of time that mites spent walking in the control (water-sprayed) conditions and in any of the oil treatments. Walking paths were significantly straighter in the oil treatments than in the control, but differences among the oil treatments did not differ significantly. Walking speeds in the oil treatments were significantly slower than in the control and decreased with increasing oil concentration. Deposits of oil at all concentrations significantly suppressed searching efficiency in comparison with control, and searching efficiency in the 1.00% oil treatment was significantly lower than in the 0.25% oil treatment. First predation of P. persimilis on AMO-contaminated eggs of two-spotted mite ( Tetranychus urticae Koch) on unsprayed leaf discs was significantly delayed in all oil treatments in comparison with the control. However there was no significant effect on the overall predation rate. In the tests of P. persimilis predation on AMO-contaminated T. urticae eggs on sprayed leaf discs, the number of first predation occurrences in the first hour was significantly lower in 0.50% and 1.00% oil treatments than in the control. Overall predation rates were significantly reduced by oil but they did not differ significantly among the oil treatments.  相似文献   

12.
Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30 mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.  相似文献   

13.
The combined effect of temperature and NaCl concentration/water activity on the growth rate of a strain of halotolerant Staphylococcus is described by the squareroot models which had been used previously to model temperature dependence only. The model r = b ( T - T min) is shown to be a special case of the BélehraAdek temperature function which is given by r = a ( T - aL)d. The constant aL is the so-called 'biological zero' and equivalent to T min in the square-root models. This and the exponent d = 2 were unaffected by changing NaCl concentration/water activity. The Bélehradek-type equations are preferable to the Arrhenius equation in that their parameters do not change with temperature. The constancy of T min allows derivation of a simple expression relating growth rate of strain CM21/3 to temperature and salt concentration/water activity within the range of linear response to temperature predicted by the square-root model.  相似文献   

14.
Jasmonic acid (JA) is a plant hormone that is involved in the induction of plant defence in response to herbivore attack. We studied the effect of exposure of gerbera leaves to JA on indirect plant defence, i.e. attraction of natural enemies of herbivores. Treatment of gerbera leaves with JA or feeding damage by the herbivorous spider mite Tetranychus urticae, both induced the production of a complex odour blend that attracts the predatory mite Phytoseiulus persimilis. This phytoseiid predator is a very effective biological control agent of the spider mite T. urticae. Comparison of headspace composition of gerbera leaves exposed to either JA or T. urticae revealed a large degree of resemblance, but some quantitative and qualitative differences were recorded. The major chemical group in both treatments is formed by the terpenoids which quantitatively comprised up to 80% of the total odour blend. These terpenoids included (E)-4,8-dimethyl-1,3,7-nonatriene, (E)--ocimene and linalool that are known to attract P. persimilis. Aldehydes, alcohols, esters and ketones, together with nitrogenous compounds formed the remaining constituents of the odour blend. The induction of predator attractants in plants by JA may be applied in biological control programs, which is discussed in this paper.  相似文献   

15.
Isolated colonies of the predatory mite, Phytoseiulus persimilis, were used to gain information regarding prevalence and transmission of Microsporidium phytoseiuli. Two colonies of P. persimilis were reared on spider mite (Tetranychus urticae)-infested bean plants in isolated cages. Disease prevalence of predators from Colony 1 remained relatively low (between 0 and 15%) over 57 weeks of observation whereas disease prevalence of predators from Colony 2 increased over 3 months (from 12 to 100%). Disease prevalence among predators from Colony 1 had increased to 100% 2 months after weekly sampling had ceased for this colony and periodic sampling confirmed that disease prevalence among individuals of both colonies remained at 100%. Microsporidian spores were not detected in randomly chosen samples of T. urticae prey mites that were removed and examined biweekly during this period. Although numerous microsporidian spores were observed in smear preparations of fecal pellets examined by light microscopy, spores were not observed on leaf surfaces or predator feces when examined by SEM. The latter appeared as intact aggregates composed of numerous dumbbell-shaped crystals and it is unlikely that spores are liberated from intact fecal pellets onto leaf surfaces. Vertical transmission of M. phytoseiuli was 100%; horizontal transmission was low (14.3%) and occurred only when immature P. persimilis were permitted to develop in contact with infected immature and adult predators. The mean number of eggs produced per mated pair was highest when uninfected females were mated with uninfected males (63.2 eggs per mated pair). Although mean egg production decreased when one or both parents were infected, not all differences were significant. Male predatory mites did not contribute to infection of their progeny. Results suggest that routine examination of P. persimilis for microsporidian spores is essential for the management of M. phytoseiuli within P. persimilis colonies. Low disease prevalence and lack of obvious disease signs or symptoms, as in the case of M. phytoseiuli, increase the probability that these pathogens will escape notice unless individuals are routinely examined for pathogens.  相似文献   

16.
The stability of association of nitroimidazole radiosensitizers (metronidazole and misonidazole) with bovine serum albumin (BSA) was examined in aqueous solutions by 1H n.m.r. spectroscopy in the presence of urea (0-8M) as denaturant, or high salt concentration (NaCl0-5M). A broadening of n.m.r. lines of the two radiosensitizers observed in the presence of BSA disappeared with increasing urea concentration. An especially large narrowing effect was observed for the lines attributed to the methylene group near to the hydroxyl in the side chain of misonidazole. The results suggest a release of both radiosensitizers from their binding sites on unfolding by urea of the polypeptide chain of BSA. The increase of ionic strength I caused a monotonic enhancement of broadening by BSA of the metronidazole lines. For misonidazole, the enhancement of broadening was observed at values of I greater than 1, but at low (less than 1 M) concentrations of NaCl the broadening disappeared. Thus, the results obtained in the systems with salt reflect quantitative changes in hydrophobic and hydrogen-bonded contributions to binding of aliphatic moieties of radiosensitizers to BSA.  相似文献   

17.
Essential oils of Artemisia absinthium L. and Tanacetum vulgare L. were extracted by three methods, a microwave assisted process (MAP), distillation in water (DW) and direct steam distillation (DSD), and tested for their relative toxicity as contact acaricides to the two spotted spider mite, Tetranychus urticae Koch. All three extracts of A. absinthium and of T. vulgare were lethal to the spider mite but to variable degrees. The LC50 obtained from the DSD oil of A. absinthium was significantly lower (0.04 mg/cm2) than that of the MAP (0.13 mg/cm2) and DW (0.13 mg/cm2) oil of this plant species. DSD and DW extracts of T. vulgare were more toxic (75.6 and 60.4% mite mortality, respectively, at 4% concentration) to the spider mite than the MAP extract (16.7% mite mortality at 4% concentration). Chromatographic analysis indicated differences in composition between the more toxic DSD oil of A. absinthium and the other two extracts of this plant, indicating that a sesquiterpene (C15H24) compound present in the DSD oil and absent in the other two may enhance the toxicity of the DSD oil. Chemical analysis of the T. vulgare extracts indicated that beta-thujone is by far the major compound of the oil (>87.6%) and probably contributes significantly to the acaricidal activity of the oil.  相似文献   

18.
Extracts prepared from a halophilic bacterium contained a reduced nicotinamide adenine dinucleotide (NADH(2)) oxidase active at high solute concentrations. The cation requirement was nonspecific, since KCl, RbCl, and CsCl replaced NaCl with little or no loss of activity, and NH(4)Cl was only partially effective. Only LiCl failed to replace NaCl. No specific chloride requirement was observed although not all anions replaced chloride. Bromide, nitrate, and iodide were essentially ineffective, whereas acetate, formate, citrate, and sulfate proved suitable. The presence of sulfate affected the ability of a cation to satisfy the solute requirement. Sulfate enhanced the rate of NADH(2) oxidation when compared with the rate observed in the presence of chloride. Cations which were inactive as chlorides (LiCl and MgCl(2) at high concentrations) satisfied the cation requirement when added as sulfate salts. Although magnesium satisfied the cation requirement, a concentration effect, as well as an anion effect, was observed. In the presence of MgCl(2), little NADH(2) oxidation was observed at concentrations greater than 1 m. At lower concentrations, the rate of oxidation increased, reaching a maximal value at 0.1 m and remaining constant up to a concentration of 0.05 m MgCl(2). Magnesium acetate and MgSO(4) also replaced NaCl, and the maximal rate of oxidation occurred at 0.05 m with respect to magnesium. There was no change in the rate of oxidation at high magnesium acetate concentrations, whereas the rate of NADH(2) oxidation increased at higher concentrations of MgSO(4).  相似文献   

19.
The combined effect of temperature and NaCl concentration/water activity on the growth rate of a strain of halotolerant Staphylococcus is described by the square-root models which had been used previously to model temperature dependence only. The model square root r = b(T-T min) is shown to be a special case of the B?lehrádek temperature function which is given by r = a(T-alpha)d. The constant alpha is the socalled 'biological zero' and equivalent to T min in the square-root models. This and the exponent d = 2 were unaffected by changing NaCl concentration/water activity. The B?lehrádek-type equations are preferable to the Arrhenius equation in that their parameters do not change with temperature. The constancy of T min allows derivation of a simple expression relating growth rate of strain CM21/3 to temperature and salt concentration/water activity within the range of linear response to temperature predicted by the square-root model.  相似文献   

20.
Leaf gas exchange, water relations and ion content were measured on two-year-old Valencia orange (Citrus sinensis [L.] Osbeck), Washington Navel orange (C. sinensis) and Marsh grapefruit (C. parodisi Macfad) scions budded to either Trifoliata (Poncirus infoliata [L] Raf) or Cleopatra mandarin (C. reticuLua Blanco) rootstoeks. Trees were watered with dülute nutrient solution containing either 0 or 50 mM NaCl for 77 days. Leaf chloride concentrations (cell sap basis) were higher in all scions budded on “Trifoliata but sodium levels were lower than in equivalent foliage budded on Cleopatra mandarin rootstock. Foliar salt levels also varied according to scion. Leaves of Marsh grapefruit had higher levels of both sodium and chloride than leaves of either Valencia orange or Washington Navel orange on both rootstocks. Accumulation of sodium and chloride in salinised leaves caused a reduction in leaf osmotic potential of 0.2–1.4 MPa. and leaf water potential declined by as much as 0.5 MPa. Turgor pressure in salinised leaves was thus maintained at or above the control level. Osmotic potentials determined by psychrometry compared with pressure-volume curves were taken to imply that some accumulation of sodium or chloride in the apoplast of salinised leaves may have occurred. Despite turgor maintenance both co2 assimilation and stomatal conductance were reduced by salinity. Following onset of leaf response to salinisation, gas exchange was impaired to a greater extent in scions budded to Cleopatra mandarin compared to those on Trifoliata. Amongst those scions. leaves of salt-treated Marsh grapefruit showed greater reductions in gas exchange than Valencia orange or Washington Navel orange budded on either rootstock. Increased sensitivity of 1Marsh grapefruit was correlated with a higher foliar sodium and chloride content in this scion. Scion differences in sensitivity of leaf gas exchange to solute concentration were independent of rootstock and appeared unrelated to leaf prolinebetaine concentrations. This implies an inherent difference between scion species with respect to salt tolerance, rather than variation in their capacity to acquire that type of compatible solute. In terms of rootstock effects, all scions proved more sensitive to salinity when budded to Cleopatra mandarin compared with Trifoliata. That response was attributed to a disproportionately higher concentration of leaf sodium in scions on Cleopatra mandarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号