首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unusual DNA structures in the adenovirus genome   总被引:16,自引:0,他引:16  
More than 80% (approximately 29 kilobase pairs) of the adenovirus serotype 2 genome was surveyed for the presence of unusual DNA conformations. Seven recombinant DNAs containing the largest HindIII fragments of AD2 DNA were analyzed for the presence of negative supercoil-dependent S1 nuclease-sensitive sites. Four plasmids each contained a specific site of S1 nuclease sensitivity whereas the other three showed no reaction. Further investigation was focused on a plasmid containing one of the positively reacting fragments (fragment C) which contained the major late promoter at coordinate 16.4 on the genome; three serotypes (Ad2, Ad7, Ad12) were studied. Fine mapping studies revealed the S1-sensitive sites to be a small region (approximately 6 base pairs) located at the TATA box of the major late promoter in all three cases. Other determinations (supercoil relaxation, T7 gene 3 product sensitivity, bromoacetaldehyde reactivity, anomalous gel mobility, the influence of negative superhelical density on nuclease sensitivity) led to the conclusion that the B-helix deformation was not due to a previously recognized DNA conformation (left-handed Z-DNA, cruciform, bent DNA), but may be accounted for by the homopurine X homopyrimidine nature of this region.  相似文献   

2.
We have initiated a study to identify host proteins which interact with the regulatory region of the human polyomavirus JC (JCV), which is associated with the demyelinating disease, progressive multifocal leukoencephalopathy. We examined the interaction of nuclear proteins prepared from different cell lines with the JCV regulatory region by DNA binding gel retardation assays. Binding was detected with nuclear extracts prepared from human fetal glial cells, glioma cells, and HeLa cells. Little or no binding was detected with nuclear extracts prepared from human embryonic kidney cells. Competitive binding assays suggest that the nuclear factor(s) which interacted with the JCV regulatory region was different from those which interacted with the regulatory region of the closely related polyomavirus SV40. We found three areas in the JCV regulatory region protected from DNase I digestion: site A, located just upstream from the TATA sequence in the first 98-base pair (bp) repeat; site B, located upstream from the TATA sequence in the second 98-bp repeat; and site C, located just following the second 98-bp repeat. There were some differences in the ability of the nuclear factor(s) from the two brain cell lines and HeLa cells to completely protect the nucleotides within the footprint region. The results from the DNase I protective studies and competitive DNA binding studies with specific oligonucleotides, suggest that nuclear factor-1 or a nuclear factor-1-like factor is interacting with all three sites in the JCV regulatory region. In addition, the results suggest that the nuclear factor which interacts with the JCV regulatory region from human brain cell lines is different from the factor found in HeLa cells.  相似文献   

3.
A nuclease-sensitive region forms in chromatin containing a 273-base-pair (bp) segment of simian virus 40 DNA encompassing the viral origin of replication and early and late promoters. We have saturated this region with short deletion mutations and compared the nuclease sensitivity of each mutated segment to that of an unaltered segment elsewhere in the partially duplicated mutant. Although no single DNA segment is required for the formation of a nuclease-sensitive region, a deletion mutation (dl45) which disrupted both exact copies of the 21-bp repeats substantially reduced nuclease sensitivity. Deletion mutations limited to only one copy of the 21-bp repeats had little, if any, effect. A mutant (dl135) lacking all copies of the 21- and 72-bp repeats, while retaining the origin of replication and the TATA box, did not exhibit a nuclease-sensitive region. Mutants which showed reduced nuclease sensitivity had this effect throughout the nuclease-sensitive region, not just at the site of the deletion, indicating that although multiple determinants must be responsible for the nuclease-sensitive chromatin structure they do not function with complete independence. Mutant dl9, which lacks the late portion of the 72-bp segment, showed reduced accessibility to BglI, even though the BglI site is 146 bp away from the site of the deletion.  相似文献   

4.
Mapping 5'' termini of JC virus early RNAs.   总被引:2,自引:1,他引:1       下载免费PDF全文
Within its enhancer promoter region, the MAD-1 strain of JC virus (JCV) has two 98-base-pair tandem repeats, each containing a TATA box-like sequence. In the present study, polyadenylated early JCV mRNAs were isolated 5 or 29 days after infection of primary human fetal glial (PHFG) cells. By using S1 nuclease, the 5' termini of the early mRNAs were mapped to nucleotide position(s) (np) 122 through 125, which lies within an AT rich region (at np 113 through 127). In contrast, when JCV DNA was transcribed in vitro, we observed a single major cluster of 5' start sites at np 94 through 97, which is approximately 25 base pairs downstream from one of the TATA boxes. By day 5, the earliest time at which JCV RNA was detected, viral DNA replication had begun; it continued for at least an additional 20 days. Since more late than early RNA was present at 5 days postinfection, the early RNAs whose synthesis began at np 122 through 125 may be analogous to SV40 late early mRNA (Ghosh and Lebowitz, J. Virol. 40:224-240, 1981). However, we have not detected RNAs with 5' termini 25 to 30 bp downstream from the TATA box at earlier times. While JCV contains two identical TATA boxes, one in each of the 98-bp repeats, only the upstream TATA box functions as an early promoter element.  相似文献   

5.
Y T Yu  J L Manley 《Cell》1986,45(5):743-751
  相似文献   

6.
7.
8.
A tumor cell suspension of an explanted JC virus (JCV)-induced owl monkey glioblastoma was inoculated intracranially into four recipient juvenile owl monkeys. Twenty-eight months following inoculation one owl monkey developed a glioblastoma, which was explanted into tissue culture. DNA from both the tumor tissue and tumor cells in culture hybridized to a JCV DNA probe by Southern analysis, indicating that free, as well as integrated, viral DNA may be present. At the time of the second culture passage, viral JCV DNA was extracted from these cells and cloned into a plasmid vector. Nucleotide sequencing of the regulatory region of the cloned DNA demonstrated homology with the prototype Mad-1 strain of JCV and revealed a 19-base-pair deletion in the second 98-base-pair tandem repeat that eliminated a second TATA box. This deletion is characteristic of the Mad-4 strain of JCV, which is highly neurooncogenic. By the third culture passage, 100% of the cells were T-antigen positive. Approximately one-third of the cells in culture hybridized to a biotinylated JCV DNA probe when in situ hybridization was used, a technique that only detects high-copy-number of replicating viral sequences. By the culture passage 5 and continuing through culture passage 14, viable JC virions could be recovered. The T protein synthesized by this virus, now termed JCV-586, differed from both the Mad-1 and Mad-4 strains in that it formed a stable complex with the cellular p53 protein in the tumor cells. Also, the JCV-586 T protein reacted to several monoclonal antibodies made to the simian virus 40 T protein that were not recognized by either the Mad-1 or Mad-4 strains.  相似文献   

9.
10.
11.
JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), has a hypervariable regulatory region (JCV RR). A conserved archetype form is found in the urines of healthy and immunocompromised individuals, whereas forms with tandem repeats and deletions are found in the brains of PML patients. Type I JCV RR, seen in MAD-1, the first sequenced strain of JCV, contains two 98-bp tandem repeats each containing a TATA box. Type II JCV RR has additional 23-bp and 66-bp inserts or fragments thereof and only one TATA box. We cloned and sequenced JCV RR from different anatomic compartments of PML patients and controls and correlated our findings with the patients' clinical outcome. Twenty-three different sequences were defined in 198 clones obtained from 16 patients. All 104 clones with tandem repeats were type II JCV RR. Patients with poor clinical outcome had high proportions of JCV RR clones with both tandem repeats in plasma (54%) and brain or cerebrospinal fluid (85%). In those who became survivors of PML, archetype sequences predominated in these anatomic compartments (75 and 100%, respectively). In patients with advanced human immunodeficiency virus infection without PML, only 8% of JCV RR clones obtained in the plasma contained tandem repeats. These data suggest that the presence of tandem repeats in plasma and CNS JCV RR clones is associated with poor clinical outcome in patients with PML.  相似文献   

12.
13.
14.
15.
S1 sensitive sites in adenovirus DNA.   总被引:19,自引:7,他引:12       下载免费PDF全文
S1 nuclease has been used as a probe for regions of DNA secondary structure in supercoiled recombinant plasmids containing adenovirus (Ad) DNA sequences. In the sequences examined two S1 sensitive sites were identified in the left-terminal 16.5% of Ad 12 DNA, one of which aligned approximately with an inverted repeat region in the DNA sequence. In addition an S1 sensitive site was dictated by a potential cruciform structure in the region of the Ad 2 major late promoter. In contrast to the expected cleavage site at the loop of the cruciform, cleavage occurred at the base of the stem in the region of the TATA box. All three S1 sensitive sites identified were more sensitive to S1 than the endogenous sites in the parent plasmids.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号