首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf water content and hormone effects on ribonuclease activity   总被引:4,自引:4,他引:0       下载免费PDF全文
In barley (Hordeum vulgare) leaves in which the water balance was not hampered, kinetin and abscisic acid effected the well documented decrease and increase, respectively, in RNase activity. When the plants were exposed to water shortage, leaf-water saturation deficit increased steadily, with kinetin enhancing and abscisic acid retarding the rise. Under drought, the pattern of hormonal effects was inverted, with kinetin enhancing RNase activity over and above the activity assayed in abscisic acid-treated leaves. A very close relationship between RNase activity and water saturation deficit was found and significantly, it was maintained irrespective of the hormonal treatment, which in itself markedly modified leaf—water saturation deficit. The inverted effects of kinetin and of abscisic acid on RNase activity under conditions of water shortage were interpreted as resulting primarily from the effects of these hormones on leaf-water. It is suggested that under conditions of increased water deficiency in the plant, cell-water supersedes hormonal regulation in effecting RNase activity.  相似文献   

2.
The interrelationship between water deficiency and hormonal makeup in plants was investigated in detached leaves of romaine lettuce (Lactuca sativa L. cv. `Hazera Yellow'). Water stress was imposed by desiccating the leaves for several hours in light or darkness at different air temperatures and relative humidity. In the course of desiccation, a rise in abscisic acid content and a decline in gibberellin and cytokinin activity were observed by gas-liquid chromatography, by both the barley endosperm bioassay and radioimmunoassay and by the soybean callus bioassay. Gibberellin activity began to decline in the stressed leaves before the rise in abscisic acid, the rate of this decline being positively correlated with the rate of increase in leaf water saturation deficit. Recovery from water stress was effected by immersing the leaf petioles in water while exposing the blades to high relative humidity. This resulted in a decrease in leaf water saturation deficit, a reduction in abscisic acid content, and an increase in gibberellin and cytokinin activity.  相似文献   

3.
Waxes are components of the cuticle covering the aerial organs of plants. Accumulation of waxes has previously been associated with protection against water loss, therefore contributing to drought tolerance. However, not much information is known about the function of individual wax components during water deficit. We studied the role of wax ester synthesis during drought. The wax ester load on Arabidopsis leaves and stems was increased during water deficiency. Expression of three genes, WSD1, WSD6 and WSD7 of the wax ester synthase/diacylglycerol acyltransferase (WS/DGAT or WSD) family was induced during drought, salt stress and abscisic acid treatment. WSD1 has previously been identified as the major wax ester synthase of stems. wsd1 mutants have shown reduced wax ester coverage on leaves and stems during normal or drought condition, while wax ester loads of wsd6, wsd7 and of the wsd6wsd7 double mutant were unchanged. The growth and relative water content of wsd1 plants were compromised during drought, while leaf water loss of wsd1 was increased. Enzyme assays with recombinant proteins expressed in insect cells revealed that WSD6 and WSD7 contain wax ester synthase activity, albeit with different substrate specificity compared with WSD1. WSD6 and WSD7 localize to the endoplasmic reticulum (ER)/Golgi. These results demonstrated that WSD1 is involved in the accumulation of wax esters during drought, while WSD6 and WSD7 might play other specific roles in wax ester metabolism during stress.  相似文献   

4.
The role of abscisic Acid in cross-adaptation of tobacco plants   总被引:6,自引:0,他引:6       下载免费PDF全文
Tobacco plants (Nicotiana rustica L.) pre-exposed to leaf dehydration, mineral deprivation, salination, or BO33− toxicity exhibited increased resistance to subzero temperature and to reduced oxygen in the root medium. The stressed plants all showed an elevated content of leaf abscisic acid. Upon transfer of mineral deprived and salinated plants to prestress conditions, a decline in leaf abscisic acid content to prestress levels took place together with a loss of the increased resistance to subzero temperature and to deprivation of root oxygen. Treatment with abscisic acid by direct application to the leaves or by addition to the root medium improved leaf resistance to subzero temperature and to deprivation of root oxygen. A common hormone-regulation mechanism involving abscisic acid is suggested for this phenomenon of “cross-adaptation” by which a given stress confers increased resistance to other, apparently unrelated stresses.  相似文献   

5.
Activity of RNase was studied in attached and detached leaves of 7-day-old ragi ( Eleusine coracana Gaertn. cv PR 202) plants during senescence using crude enzyme extracts. The RNase activity was relatively constant in attached leaves. In excised leaves incubated in the dark there was a rapid rise in enzyme activity up to 48 h, followed by a decline. No such decrease was observed in the light. Benzimidazole and gibberellic acid suppressed the activity of RNase up to 48 h in the dark and 96 h in the light. Both the growth regulators also prevented the post-48 h decline in RNase activity of dark incubated excised leaves. Decline in the levels of chlorophyll and RNA in the illuminated excised leaves was not affected by 3-(3,4-dichlorophenyl)-1,1-dimethyIurea, but the inhibitor prevented the photo-induced rise in RNase activity. Cycloheximide and actinomycin D could completely prevent both detachment (increase in enzyme activity after the leaf is excised) and photo-induced rise in RNase activity. Benzimidazole and gibberellic acid prevented the rise in the activity of RNase on one hand and maintained it on the other by their influence on its biosynthesis. Photoinduction of RNase and photo-induced retardation of senescence are concluded to be two different processes.  相似文献   

6.
Leaf senescence is one of the most limiting factors to plant productivity under salinity. Both the accumulation of specific toxic ions (e.g. Na+) and changes in leaf hormone relations are involved in the regulation of this process. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated for 3 weeks under high salinity (100 mM NaCl) and leaf senescence-related parameters were studied during leaf development in relation to Na+ and K+ contents and changes in abscisic acid (ABA), cytokinins, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the auxin indole-3-acetic acid (IAA). Na+ accumulated to a similar extent in both leaves 4 and 5 (numbering from the base of the plant) and more quickly during the third week, while concurrently K+ contents sharply decreased. However, photosystem II efficiency, measured as the F(v)/F(m) ratio, decreased from the second week of salinization in leaf 4 but only at the end of the third week in the younger leaf 5. In the prematurely senescent leaf 4, ABA content increased linearly while IAA strongly decreased with salinization time. Although zeatin (Z) levels were scarcely affected by salinity, zeatin-riboside (ZR) and the total cytokinin content (Z+ZR) progressively decreased by 50% from the imposition of the stress. ACC was the only hormonal compound that increased in leaf tissue coincident with the onset of oxidative damage and the decline in chlorophyll fluorescence, and prior to massive Na+ accumulation. Indeed, (Z+ZR) and ACC contents and their ratio (Z+ZR/ACC) were the hormonal parameters best correlated with the onset and progression of leaf senescence. The influence of different hormonal changes on salt-induced leaf senescence is discussed.  相似文献   

7.
Puri J  Tal M 《Plant physiology》1977,59(2):173-177
Plants of the wilty tomato (Lycopersicum esculentum) mutant, flacca, and of the normal cultivar Rheinlands Ruhm growing under either “normal” or high humidity were used in this research. Under normal humidity, RNase activity was much higher in mutant plants in which abscisic acid (ABA) and water content were lower than in the normal plant. The mutant also contained less RNA and protein per cell and less soluble RNA relative to ribosomal RNA as compared with the normal genotype. In ABA-treated mutant plants, RNase activity decreased while RNA, protein, the ratio of soluble to ribosomal RNA and water content increased.  相似文献   

8.
Cut seedlings of wheat plants (Triticum aestivum L. cv. Starke II Weibull) between 6 and 7 days old were water stressed in darkness by exposing them to air of 35% relative humidity 2.5 to 20 h. This treatment resulted in a water potential of -11 bars in the leaves after 20 h. The leaves were then rewatered and irradiated. The chlorophyll formation that took place in fully turgid leaves during the greening was markedly decreased in the case of the water-stress pretreatmet. and especially the lag phase was prolonged. The longer the stress pretreatment the more evident was the subsequent effect on chlorophyll formation. However, no linear relationship was found between the amount of stress and the chlorophyll content. Protochlorophyllide regeneration from endogenously formed δ-aminolevulinic acid was markedly decreased even after the shortest water-stress period. However, protochlorophyllide accumulation from exogenously supplied δ-aminolevulinic acid was only slightly decreased following the water-stress pretreatment. Further more, the ratio of protochlorophyllide650 to protochlorophyllide628 was slightly reduced by the same conditions. During the stress period both abscisic acid and proline were accumulated in the leaves. The content of abscisic acid increased up to six times the normal level during water stress lasting for 20 h. The increase of proline was about three-fold for similar treatment. After rewatering the leaves the levels of both abscisic acid and proline rapidly declined and reached. 10 h later, the levels found in unstressed seedlings. The increase in abscisic acid during water stress associated with impaired chlorophyll metabolism suggested that the after-effect of water stress might be linked to chlorophyll metabolism through abscisic acid or some of its metabolites. The changes in proline content open the possibility that this substance could function as a reserve substance for the formation of chlorophyll after the discon tinuation of the stress.  相似文献   

9.
以一年生沙枣幼苗为材料,研究了外源脱落酸和外源硅在干旱(T2:SRWC=35%~40%,处理时间30 d)胁迫下沙枣幼苗叶片相对含水量、叶片水势、质膜相对透性、丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性的影响。结果表明:沙枣幼苗T2干旱处理时,与对照(ck)相比其叶片相对含水量和水势均极显著降低,质膜相对透性有所增大,沙枣幼苗被受到了一定程度的伤害。同时,向T2干旱处理的幼苗使用外源脱落酸(ABA)后,可以极显著提高其叶片相对含水量和过氧化氢酶活性,极显著降低叶片质膜相对透性和丙二醛含量,叶片水势也有所降低,这说明使用外源脱落酸能够减轻干旱胁迫对沙枣幼苗的伤害。同时,向T2干旱处理的幼苗使用外源硅(Si)时,与未使用外源硅的T2相比其叶片相对含水量和超氧化物歧化酶(SOD)活性极显著上升,叶片水势也有下降趋势,这说明使用外源硅在一定程度上能够缓解干旱胁迫对沙枣幼苗的伤害。  相似文献   

10.
In this study cashew (Anacardium occidentale) plants were exposed to a short- and long-term exposure to NaCl in order to establish the importance of the salt-induced proteolysis and the glutamine synthetase activity on the proline accumulation. The cashew leaf showed a prominent proline accumulation in response to salt stress. In contrast, the root tissue had no significant changes in proline content even after the drastic injury caused by salinity on the whole plant. The leaf proline accumulation was correlated to protease activity, accumulation of free amino acid and ammonia, and decrease of both total protein and chlorophyll contents. The leaf GS activity was increased by the salt stress whereas in the roots it was slightly lowered. Although the several amino acids in the soluble pool of leaf tissue have showed an intense increment in its concentrations in the salt-treated plants, proline was the unique to show a proportional increment from 50 to 100 mol m-3 NaCl exposure (16.37 to 34.35 mmol kg-1 DM, respectively). Although the leaf glutamate concentration increased in the leaves of the salt-stressed cashew plants, as compared to control, its relative contribution to the total amino acid decreased significantly in stressed leaves when compared to other amino acids. In addition, when the leaf discs were incubated with NaCl in the presence of exogenous precursors (Glu, Gln, Orn or Arg) involved in the proline synthesis pathways, the glutamate was unique in inducing a significant enhancement of the proline accumulation compared to those discs with precursor in the absence of NaCl. These results, together with the salt-induced increase in the GS activity, suggest an increase in the de novo synthesis of proline probably associated with the increase of the concentration of glutamate. Moreover, the prominent salt-induced proline accumulation in the leaves was associated with the higher salt-sensitivity in terms of proteolysis and salt-induced senescence as compared to the roots. In conclusion, the leaf-proline accumulation was due, at least in part, to the increase in the salt-induced proteolysis associated with the increments in the GS activity and hence the increase in the concentration of glutamate precursor in the soluble amino acid pool.  相似文献   

11.
Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant.  相似文献   

12.
The effects of senescence and drought on the levels and activities of chlorophyllase (EC 3.1.1.14), phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39) in the intact primary leaves of soybean ( Glycine max L. cv. Jackson) were monitored. Plants were grown either (1) for 2 to 8 weeks and the primary leaves harvested every week or (2) for 2 weeks and the plants subjected to drought stress and compared to control plants that were watered daily. In the senescence experiment, chlorophyllase activity changed in parallel with water content, leaf chlorophyll and total protein per unit dry weight of leaf tissue, with all factors increasing in concert during expansion of the primary leaves in the first 4 to 5 weeks of seedling development. Thereafter, all factors, including chlorophyllase activity, declined reaching markedly reduced values at weeks 7 and 8 when the primary leaves were yellow and ready to abscise. PEPC and Rubisco activities peaked in the third week, i.e. well before full leaf expansion, and then declined. In contrast to its response during senescence, chlorophyllase activity per unit leaf dry weight did not change during drought stress, but the specific activity of the enzyme rose and showed an inverse relationship to total leaf chlorophyll and protein content. Rubisco activity was highly sensitive to drought, with decrements observed in the activity and in levels of the large subunit within 2 days of withholding water and before significant changes in leaf water content were detected.  相似文献   

13.
Nitrogen deficiency in cotton plants (Gossypium hirsutum L.) increased the threshold water potentials for both stomatal closure and leaf senescence (defined as loss of chlorophyll and protein) during drought. These studies attempted to answer two questions: (1) What is the basis for the N/water interaction on senescence? (2) Is there a direct relationship between stomatal closure and senescence? Young and old leaves from N-deficient and N-sufficient plants maintained their relative sensitivities to water stress when excised leaf discs were floated on solutions of polyethylene glycol in dim light. In this leaf disc system, both leaf aging and N deficiency increased the threshold water potential for senescence. Leaf aging and N deficiency also decreased the concentration of exogenous abscisic acid necessary to initiate senescence in discs. A role for cytokinins in controlling senescence could not be clearly shown. In young leaves of both N-deficient and N-sufficient plants, stomata closed at water potentials much higher than those causing senescence. During leaf aging, the water potentials causing senescence increased more than those causing stomatal closure. The two processes thus occurred at about the same potentials in the oldest leaves. These data argue against a general cause-and-effect relationship between stomatal closure and senescence. Rather, each process apparently responded independently to absicsic acid accumulated during drought.  相似文献   

14.
Barley leaf discs maintained in dark accumulated a massive amount of putrescine (Put), lost chlorophyll and senescenced rapidly. At the same time RNase activity increased significantly. Exogenous spermidine (Spd) inhibited RNase activity, the loss of chlorophyll and degradation of the proteins from thylakoid membranes. Using SDS-PAGE and immunoblot analysis it was shown that spermidine was effective in the retardation of the loss of LHCPII observed in water-treated detached leaves. Analysis of PSII particles isolated from leaf fragments floated in water in the dark revealed the presence of Put, Spd and Spm. In spermidine treated leaves the level of this polyamine in photosystem II was above 5-fold higher than in control. The experimental findings obtained in this study provide evidence that applied spermidine interacts directly with thylakoid membranes so that they become more stable to degradation during senescence.  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) are one of the most important drivers of soil ecosystem dynamics. AMF have the potential to improve plant growth and development by modulating key hormonal pathways, which result in decreasing the adverse impact of abiotic stress, such as drought. Pot experiments were conducted in this study to investigate the ability of AMF to ameliorate the adverse impact of drought in Ephedra foliate. Non-inoculated AMF E. foliate (Ef) plants, exhibited reduced growth in response to drought stress with a concomitant lowering of chlorophyll pigments, relative to non-stressed and AMF inoculated plant. AMF inoculated E. foliate showed improved nitrogen metabolism by positively regulating nitrate and nitrite reductase activity which results in greater ammonium availability for the synthesis of amino acids. Inoculation with AMF also increased antioxidant enzyme activity, ascorbic acid contents, and reduction in glutathione level. This resulted in significant amelioration of oxidative damage to plant membranes by restricting the excess generation of reactive oxygen species (ROS), such as hydrogen peroxide. Greater content of proline, glucose, and total soluble protein in AMF-inoculated plants provided further benefit to E. foliate plants and their ability to withstand drought stress, and also evident by a greater level of sucrose phosphate synthase activity. AMF significantly enhanced the uptake of essential nutrients like K, Mg, and Ca. Importantly, higher concentrations of plant hormones, including indole acetic acid (IAA), indole butyric acid (IBA), gibberellic acid (GA), and abscisic acid (ABA), were maintained in AMF-inoculated Ef plants. AMF inoculation also boosted phosphorous metabolism by increasing alkaline and acid phosphatase enzyme activity. In summary, AMF-inoculation of Ef plants significantly reduced the deleterious effect of drought stress by up-regulating the antioxidant defense system, synthesis of osmolytes, and maintaining phytohormone levels.  相似文献   

16.
Abstract Leaf diffusion resistance and leaf water potential of intact Solanum melongena plants were measured during a period of chilling at 6 °C. Two pretreatments, consisting of a period of water stress or a foliar spraying of abscisic acid (ABA), were imposed upon the plants prior to chilling. The control plants did not receive a pretreatment. In addition to intact plant studies, stomatal responses to water loss and exogenous abscisic acid were investigated using excised leaves, and the influence of the pretreatment observed. Chilled, control plants wilted slowly and maintained open stomata despite a decline in leaf water potential to –2.2 MPa after 2 d of chilling. In contrast plants that had been water stressed or had been sprayed with abscisic acid, prior to chilling, did not wilt and maintained a higher leaf water potential and a greater leaf diffusion resistance. In plants that had not received a pretreatment, abscisic acid caused stomatal closure at 35 °C, but at 6°C it did not influence stomatal aperture. The two pretreatments greatly increased stomatal sensitivity to both exogenous ABA and water stress, at both temperatures. Stomatal response to water loss from excised leaves was greatly reduced at 6°C. These results are discussed in relation to low temperature effects on stomata and the influence of preconditioning upon plant water relations.  相似文献   

17.
Drought and salinity are severe environmental stresses and limit soybean growth. In this study, a comparative analysis of physiological and molecular responses of two soybean (Glycine max L.) genotypes to these stresses was carried out. Plants of drought-tolerant genotype RD (cv. FD92) and sensitive genotype SD (cv. Z1303) were exposed to 15 % (m/v) PEG 6000, which simulated drought stress, or 150 mM NaCl. The RD plants maintained larger leaf area and higher net photosynthetic rate, chlorophyll content, stomatal conductance, and relative water content compared with the SD plants. Leaf proline content increased under both stresses more in RD than in SD. The drought tolerance of RD plants was also correlated with greater antioxidant activity and lower content of hydrogen peroxide and malondialdehyde under stress conditions. Amounts of abscisic acid, jasmonic acid, and salicylic acid under stress increased to a greater extent in RD than in SD plants. At the molecular level, the effects of 20-d stress treatments were manifested by relatively higher expression of drought- or salt-related genes: GmP5CS, GmDREB1a, GmGOLS, GmBADH, and GmNCED1 in RD plants than in SD plants. These results form the basis for understanding the mechanisms of the drought- and salt-stress tolerance in soybean.  相似文献   

18.
Gibberellic acid improves water deficit tolerance in maize plants   总被引:1,自引:0,他引:1  
The combination effects of water stress and gibberellic acid (GA3) on physiological attributes and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Maize plants were grown in the control (well watered WW) and water stress subjected to treated both water stress and two concentrations of gibberellic acid (GA3 25 mg L−1, 50 mg L−1). WS was imposed by maintaining the moisture level equivalent to 50 % pot capacity whereas the WW pots were maintained at full pot capacity. Water stress reduced the total dry weight, chlorophyll concentration, and leaf relative water content (RWC), but it increased proline accumulation and electrolyte leakage in maize plants and appears to affect shoots more than roots. Both concentrations of GA3 (25 and 50 mg L−1) largely enhanced the above physiological parameters to levels similar to control. WS reduced leaf Ca2+ and K+ concentrations, but exogenous application of GA3 increased those nutrient levels similar or close to control. Exogenous application of GA3 improved the water stress tolerance in maize plants by maintaining membrane permeability, enhancing chlorophyll concentration, leaf relative water content (LRWC) and some macro-nutrient concentrations in leaves.  相似文献   

19.
王娜  王奎玲  刘庆华  刘庆超 《生态学杂志》2016,27(10):3114-3122
以八角金盘、夹竹桃、阔叶十大功劳、樟叶槭4种常绿植物为试材,测定人工模拟低温条件下离体叶片可溶性糖、可溶性蛋白、游离脯氨酸、过氧化物酶活性、叶绿素含量和相对电导率的变化,结合自然越冬过程中叶片叶绿素指数(SPAD)、叶表面特征及解剖组织结构的变化,综合评价这4种常绿树种的抗寒能力.结果表明: 在人工低温胁迫过程中,4种常绿植物叶片叶绿素含量呈下降趋势,可溶性蛋白含量在-20 ℃出现高峰值,可溶性糖、游离脯氨酸、过氧化物酶活性和相对电导率整体呈上升趋势.八角金盘、夹竹桃、阔叶十大功劳和樟叶槭的低温半致死温度分别为-8.0、-13.4、-19.4和-14.8 ℃.自然越冬期间,4种植物叶片SPAD值变化幅度较大,显示出植物叶片中叶绿素相对含量变化对低温的适应性;同时,叶片厚度、角质层厚度、栅栏组织厚度和紧密度均有增加,并先后出现质壁分离,叶肉细胞中淀粉粒、草酸钙簇晶含量呈增高的趋势.夹竹桃叶片特有的气孔窝和窝内密被的非腺毛,阔叶十大功劳叶中的厚壁组织等在一定程度上提高了其抗寒性.叶片表面蜡质层破损、表皮毛断裂、栅栏组织形变、胞间空隙增大等现象的出现表明植物遭到了一定程度的低温伤害.  相似文献   

20.
Abscisic acid and the after-effect of stress in tobacco plants   总被引:2,自引:0,他引:2  
Summary Tobacco plants (Nicotiana rustica L.) were exposed to a period of stress of either mineral deprivation or salination of the root medium. Thereafter the plants were transferred back to the pre-stress growth medium, for study of the pattern of recovery. Abscisic acid (ABA) content and the extent of stomatal opening in leaves of tobacco plants were found to be inversely related. The results support the possibility that the phenomenon know as after-effect of stress may not be exclusive to recovery from water stress, but may be typical of the pattern of plant recovery from the effects of several growth restricting environments. It is suggested that the after-affect results from the delay in resumption of the pre-stress hormonal balance in the plant, particularly with regard to ABA, after termination of the stress.Abbreviations ABA abscisic acid - WSD water saturation deficit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号