首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Galanin is a 29- or 30-amino acid peptide with wide-ranging effects on hormone release, feeding behavior, smooth muscle contractility, and somatosensory neuronal function. Three distinct galanin receptor (GALR) subtypes, designated GALR1, 2, and 3, have been cloned from the rat. We report here the cloning of the human GALR2 and GALR3 genes, an initial characterization of their pharmacology with respect to radioligand binding and signal transduction pathways, and a profile of their expression in brain and peripheral tissues. Human GALR2 and GALR3 show, respectively, 92 and 89% amino acid sequence identity with their rat homologues. Radioligand binding studies with 125I-galanin show that recombinant human GALR2 binds with high affinity to human galanin (KD = 0.3 nM). Human GALR3 binds galanin with less affinity (IC50 of 12 nM for porcine galanin and 75 nM for human galanin). Human GALR2 was shown to couple to phospholipase C and elevation of intracellular calcium levels as assessed by aequorin luminescence in HEK-293 cells and by Xenopus melanophore pigment aggregation and dispersion assays, in contrast to human GALR1 and human GALR3, which signal predominantly through inhibition of adenylate cyclase. GALR2 mRNA shows a wide distribution in the brain (mammillary nuclei, dentate gyrus, cingulate gyrus, and posterior hypothalamic, supraoptic, and arcuate nuclei), and restricted peripheral tissue distribution with highest mRNA levels detected in human small intestine. In comparison, whereas GALR3 mRNA was expressed in many areas of the rat brain, there was abundant expression in the primary olfactory cortex, olfactory tubercle, the islands of Calleja, the hippocampal CA regions of Ammon's horn, and the dentate gyrus. GALR3 mRNA was highly expressed in human testis and was detectable in adrenal gland and pancreas. The genes for human GALR2 and 3 were localized to chromosomes 17q25 and 22q12.2–13.1, respectively.  相似文献   

2.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

3.
Previously we showed that galanin, a neuropeptide, is secreted by human squamous cell carcinoma of the head and neck (SCCHN) in which it exhibits an autocrine mitogenic effect. We also showed that rap1, a ras-like signaling protein, is a critical mediator of SCCHN progression. Given the emerging importance of the galanin cascade in regulating proliferation and survival, we investigated the effect of GAL on SCCHN progression via induction of galanin receptor 2 (GALR2)-mediated rap1 activation. Studies were performed in multiple SCCHN cell lines by inducing endogenous GALR2, by stably overexpressing GALR2 and by downregulating endogenous GALR2 with siGALR2. Cell proliferation and survival, mediated by the ERK and AKT signaling cascades, respectively, were evaluated by functional and immunoblot analysis. The role of rap1 in GALR2-mediated proliferation and survival was evaluated by modulating expression. Finally, the effect of GALR2 on tumor growth was determined. GALR2 stimulated proliferation and survival via ERK and AKT activation, respectively. Knockdown or inactivation of rap1 inhibited GALR2-induced, AKT and ERK-mediated survival and proliferation. Overexpression of GALR2 promoted tumor growth in vivo. GALR2 promotes proliferation and survival in vitro, and promotes tumor growth in vivo, consistent with an oncogenic role for GALR2 in SCCHN.  相似文献   

4.
The neuropeptide galanin is widely expressed in the periphery and the central nervous system and mediates diverse physiological processes and behaviors including alcohol abuse, depression and anxiety. Four genes encoding galanin and its receptors have been identified (GAL, GALR1, GALR2 and GALR3). Recently we found that GAL haplotypes were associated with alcoholism, raising the possibility that genetic variation in GALR1, GALR2 and GALR3 might also alter alcoholism risk. Tag single nucleotide polymorphisms (SNPs) were identified by genotyping SNP panels in controls from five populations. For the association study with alcoholism, six GALR1, four GALR2 and four GALR3 SNPs were genotyped in a large cohort of Finnish alcoholics and non-alcoholics. GALR3 showed a significant association with alcoholism that was driven by one SNP (rs3,091,367). Moreover, the combination of the GALR3 rs3,091,367 risk allele and GAL risk haplotypes led to a modestly increased odds ratio (OR) for alcoholism (2.4) as compared with the effect of either GAL (1.9) or GALR3 alone (1.4). Likewise, the combination of the GALR3 and GAL risk diplotypes led to an increased OR for alcoholism (4.6) as compared with the effect of either GAL (2.0) or GALR3 alone (1.6). There was no effect of GALR1 or GALR2 on alcoholism risk. This evidence suggests that GALR3 mediates the alcoholism-related actions of galanin.  相似文献   

5.
Galanin is a widely distributed neuropeptide with a variety of physiological functions. Three galanin receptor subtypes, GALR1, GALR2, and GALR3, have been reported. We isolated a novel galanin-like peptide (GALP) from porcine hypothalamus by observing its activity for increasing [(35)S]GTPgammaS binding to a membrane preparation of GALR2-transfected cells. The peptide had 60 amino acid residues and a non-amidated C terminus. The amino acid sequence of GALP-(9-21) was completely identical to that of galanin-(1-13). A cloned porcine GALP cDNA indicated that GALP was processed from a 120-amino acid GALP precursor protein. The structures of rat and human GALP-(1-60) were deduced from cloned cDNA, which indicated that the amino acid sequences 1-24 and 41-53 were highly conserved between humans, rats, and pigs. Receptor binding studies revealed that porcine GALP-(1-60) had a high affinity for the GALR2 receptor (IC(50) = 0.24 nM) and a lower affinity for the GALR1 receptor (IC(50) = 4.3 nM). In contrast, galanin showed high affinity for the GALR1 (IC(50) = 0.097 nM) and GALR2 receptors (IC(50) = 0.48 nM). GALP is therefore an endogenous ligand that preferentially binds the GALR2 receptor, whereas galanin is relatively non-selective.  相似文献   

6.
Galanin is a neuropeptide implicated in the regulation of feeding, reproduction, cognition, nociception, and seizure susceptibility. There are three known galanin receptor (GALR) subtypes (GALR1, GALR2, and GALR3), which bind to galanin with different affinities and have their own unique distributions, signaling mechanisms, and putative functions in the brain and peripheral nervous system. To gain further insight into the possible physiological significance of GALR2, we created mutant mice that were deficient in GALR2 and compared their phenotype to that of wild-type (WT) littermate or age-matched controls, with respect to basic motor and sensory function, feeding behavior, reproduction, mood, learning and memory, and seizure susceptibility. Phenotypic analysis revealed that animals bearing a deletion of GALR2 did not differ significantly from their WT controls in any of the measured variables. We conclude that either GALR2 plays no role in these physiological functions or through redundancy or compensation these mutant animals can adapt to the congenital absence of GALR2. It is also conceivable that GALR2 plays only a subtle role in some of these functions and that the impact of its loss could not be detected by the analytical procedures used here.  相似文献   

7.
Our laboratory is interested in characterizing the neurotransmitter and hormonal phenotype of neurons in the rat hypothalamus expressing novel neuropeptide receptors of the neuropeptide Y and galanin families. In this review, we describe a technique combining nonradioactive in situ hybridization to detect mRNA and fluorescence immunohistochemistry to detect protein antigens. We examined paraffin sections of rat hypothalamus using confocal microscopy to determine whether mRNA for the galanin receptor, GALR2, was colocalized at the cellular level of resolution with somatostatin or tyrosine hydroxylase immunoreactivity. We found that many neurons in the hypothalamus expressed both GALR2 mRNA and either somatostatin or tyrosine hydroxylase immunoreactivity. The simultaneous detection of mRNA and protein immunoreactivity in individual neurons using the confocal microscope for visualization is an excellent tool for the analysis of newly characterized genes in the central nervous system.  相似文献   

8.
Our laboratory is interested in characterizing the neurotransmitter and hormonal phenotype of neurons in the rat hypothalamus expressing novel neuropeptide receptors of the neuropeptide Y and galanin families. In this review, we describe a technique combining nonradioactive in situ hybridization to detect mRNA and fluorescence immunohistochemistry to detect protein antigens. We examined paraffin sections of rat hypothalamus using confocal microscopy to determine whether mRNA for the galanin receptor, GALR2, was colocalized at the cellular level of resolution with somatostatin or tyrosine hydroxylase immunoreactivity. We found that many neurons in the hypothalamus expressed both GALR2 mRNA and either somatostatin or tyrosine hydroxylase immunoreactivity. The simultaneous detection of mRNA and protein immunoreactivity in individual neurons using the confocal microscope for visualization is an excellent tool for the analysis of newly characterized genes in the central nervous system.  相似文献   

9.
Galanin receptor type 2 (GALR2) is a class A G-protein-coupled receptor (GPCR), and it has been reported that orthosteric ligands and positive allosteric modulators (PAMs) of GALR2 could potentially be used to treat epilepsy. So far, the X-ray structure of this receptor has not been resolved, and knowledge of the 3D structure of GALR2 may prove informative in attempts to design novel ligands and to explore the mechanism for the allosteric modulation of this receptor. In this study, homology modeling was used to obtain several GALR2 models using known templates. ProSA-web Z-scores and Ramachandran plots as well as pre-screening against a test dataset of known compounds were all utilized to select the best model of GALR2. Molecular dockings of galanin (a peptide) and a nonpeptide ligand were carried out to choose the (GALR2 model)–galanin complex that showed the closest agreement with the corresponding experimental data. Finally, a 50-ns MD simulation was performed to study the interactions between the GALR2 model and the synthetic and endogenous ligands. The results from docking and MD simulation showed that, besides the reported residues, Tyr1604.60, Ile1053.32, Ala2747.35, and Tyr163ECL2 also appear to play important roles in the binding of galanin. The potential allosteric binding pockets in the GALR2 model were then investigated via MD simulation. The results indicated that the mechanism for the allosteric modulation caused by PAMs is the binding of the PAM at pocket III, which is formed by galanin, ECL2, TM2, TM3, and ECL1; this results in the disruption of the Na+-binding site and/or the Na+ ion pathway, leading to GALR2 agonism.  相似文献   

10.
11.
中枢神经系统疾病因其发病机制复杂而难以找到药物作用的有效靶点。甘丙肽(galanin, GAL)因其广泛的中枢神经系统分布并与多种神经系统疾病密切相关而进入人们的视线。现已证明,GAL与三种G蛋白偶联受体(GALR1-3)结合后,通过抑制cAMP/PKA(GALR1、GALR3)和激活磷脂酶C(GALR2)等信号通路调节众多生理和病理过程。本文概述了近年来GAL及其受体在中枢神经系统疾病中的作用的研究进展,旨在为理解这些疾病的发病机制以及靶向药物的研发提供新的指导。  相似文献   

12.
13.
The neuropeptide galanin elicits a range of biological effects by interaction with specific G-protein-coupled receptors. Human and rat GALR1 galanin receptor cDNA clones have previously been isolated using expression cloning. We have used the human GALR1 cDNA in hybridization screening to isolate the gene encoding GALR1 in both human (GALNR) and mouse (Galnr). The gene spans approximately 15–20 kb in both species; its structural organization is conserved and is unique among G-protein-coupled receptors. The coding sequence is contained on three exons, with exon 1 encoding the N-terminal end of the receptor and the first five transmembrane domains. Exon 2 encodes the third intracellular loop, while exon 3 encodes the remainder of the receptor, from transmembrane domain 6 to the C-terminus of the receptor protein. The mouse and human GALR1 receptor proteins are 348 and 349 amino acids long, respectively, and display 93% identity at the amino acid level. The mouseGalnrgene has been localized to Chromosome 18E4, homoeologous with the previously reported localization of the humanGALNRgene to 18q23 in the same syntenic group as the genes encoding nuclear factor of activated T-cells, cytoplasmic 1, and myelin basic protein.  相似文献   

14.
Galanin is a neuropeptide expressed in the central and peripheral nervous systems, where it regulates various processes including neuroendocrine release, cognition, and nerve regeneration. Three G-protein coupled receptors (GPCRs) for galanin have been discovered, which is the focus of efforts to treat diseases including Alzheimer’s disease, anxiety, and addiction. To understand the basis of the ligand preferences of the receptors and to assist structure-based drug design, we used cryo-electron microscopy (cryo-EM) to solve the molecular structure of GALR2 bound to galanin and a cognate heterotrimeric G-protein, providing a molecular view of the neuropeptide binding site. Mutant proteins were assayed to help reveal the basis of ligand specificity, and structural comparison between the activated GALR2 and inactive hβ2AR was used to relate galanin binding to the movements of transmembrane (TM) helices and the G-protein interface.

Galanin is a neuropeptide expressed in the central and peripheral nervous systems, where it regulates various processes including neuroendocrine release, cognition, and nerve regeneration. This cryo-electron microscopy study shows how galanin interacts with one of its three human receptor proteins, GALR2, and reveals the basis of the selectivity of this GPCR for Gq.  相似文献   

15.
In our search for novel human galanin receptor (GALR) subtypes, human genomic DNA was PCR amplified using sets of degenerate primers based on conserved sequences in human and rat GALR. The sequence of one of the subcloned PCR products revealed homology to a sequence in the 3′ region of the human CD22 gene following a BLAST search of GenBank's database. A search for open reading frames (ORF) in the non-coding CD22 sequence resulted in identification of two novel putative intronless genes, GPR40 and GPR41. The recent submission of sequence overlapping the downstream CD22 sequence revealed a possible polymorphic insert containing a third intronless gene, GPR42, sharing 98% amino acid identity with GPR41, followed by a fourth intronless gene, GPR43. Thus, the GPR40, GPR41, GPR42, and GPR43 genes, respectively, occur downstream from CD22, a gene previously localized on chromosome 19q13.1. The four putative novel human genes encode new members of the GPCR family and share little homology with GALR.  相似文献   

16.
Summary The GALR1 galanin receptor is expressed at high levels within the central nervous system and is hypothesised to play a significant role in many of the central actions of galanin. To determine which specific actions of galanin are mediated by GALR1, we have developed mice that carry an insertional inactivating mutation within the first coding exon of the gene encoding GALR1 (Galr1). HomozygousGalr1 −/− mice are viable. Both male and female mice exhibit reduced circulating levels of insulin-like growth factor-I (IGF-I) but no significant difference in growth rate relative toGalr1 +/+ controls. Female homozygousGalr1 −/− mice are capable of breeding and nursing offspring. Functional recovery after sciatic nerve crush is not significantly different inGalr1 −/− mice relative toGalr1 +/+ controls, indicating that GALR1 does not mediate the nerve regenerative effects of galanin. However, homozygousGalr1 −/− mice exhibit spontaneous seizures, identifying a critical role for GALR1 in mediating the anti-seizure activity of galanin.  相似文献   

17.
The GALR1 galanin receptor is expressed at high levels withinthe central nervous system and is hypothesised to play asignificant role in many of the central actions of galanin. Todetermine which specific actions of galanin are mediated byGALR1, we have developed mice that carry an insertionalinactivating mutation within the first coding exon of the geneencoding GALR1 (Galr1). HomozygousGalr1 -/-mice are viable. Both male and female mice exhibit reducedcirculating levels of insulin-like growth factor-I (IGF-I) butno significant difference in growth rate relative to Galr1 +/+ controls. Female homozygousGalr1 -/-mice are capable of breeding and nursing offspring. Functionalrecovery after sciatic nerve crush is not significantlydifferent in Galr1 -/- mice relative to Galr1 +/+ controls, indicating that GALR1 does not mediate the nerve regenerative effects of galanin. However, homozygous Galr1 -/- mice exhibit spontaneous seizures, identifying a critical role for GALR1 in mediating the anti-seizure activity of galanin.  相似文献   

18.
Spexin (SPX, NPQ) is a novel peptide involved in the regulation of energy metabolism. SPX inhibits food intake and reduces body weight. In obese humans, SPX is the most down-regulated gene in fat. Therefore, SPX might be involved in the regulation of lipid metabolism. Here, we study the effects of SPX on lipolysis, lipogenesis, glucose uptake, adipogenesis, cell proliferation and survival in isolated human adipocytes or murine 3T3-L1 cells. SPX and its receptors, GALR2 and GALR3, are present at mRNA and protein levels in murine 3T3-L1 cells and human adipocytes. SPX inhibits adipogenesis and down-regulates mRNA expression of proadipogenic genes such as Pparγ, C/ebpα, C/ebpβ and Fabp4. SPX stimulates lipolysis by increasing the phosphorylation of hormone sensitive lipase (HSL). Simultaneously, SPX inhibits lipogenesis and glucose uptake in human adipocytes and murine 3T3-L1 cells. SPX has no effect on murine 3T3-L1 cell proliferation and viability. Moreover, our research showed that the SPX effect on adipocytes metabolism is mediated via GALR2 and GALR3 receptors. SPX is a novel regulator of lipid metabolism in murine 3T3-L1 and human adipocytes.  相似文献   

19.
Galanin is a hormone 29 or 30 amino acids (aa) long that is widely distributed within the body and exerts numerous biological effects in vertebrates. To fully understand its physiological roles in reptiles, we analyzed preprogalanin cDNA structure and expression in the turtle pituitary. Using the Chinese soft-shell turtle (Pelodiscus sinensis order Testudines), we obtained a 672-base pair (bp) cDNA containing a 99-bp 5'-untranslated region, a 324-bp preprogalanin coding region, and a 249-bp 3'-untranslated region. The open-reading frame encoded a 108-aa preprogalanin protein with a putative 23-aa signal sequence at the NH(2) terminus. Based on the location of putative Lys-Arg dibasic cleavage sites and an amidation signal of Gly-Lys-Arg, we propose that turtle preprogalanin is processed to yield a 29-aa galanin peptide with Gly(1) and Thr(29) substitutions and a COOH-terminal amidation. Sequence comparison revealed that turtle preprogalanin and galanin-29 had 48-81% and 76-96% aa identities with those of other vertebrates, respectively, suggesting their conservative nature. Expression of the turtle galanin gene was detected in the pituitary, brain, hypothalamus, stomach, liver, pancreas, testes, ovaries, and intestines, but not in the adipose or muscle tissues, suggesting tissue-dependent differences. An in vitro study that used pituitary tissue culture indicated that treatment with 17beta-estradiol, testosterone, or gonadotropin-releasing hormone resulted in increased galanin mRNA expression with dose- or time-dependent differences, whereas leptin and neuropeptide Y reduced galanin mRNA levels. These results suggest a hormone-dependent effect on hypophyseal galanin mRNA expression.  相似文献   

20.
Deecher DC  López FJ 《Peptides》2002,23(3):545-553
Galanin (GAL) is a biologically active peptide that is involved in a variety of physiological functions. The purpose of this study was to evaluate whether porcine and rat galanin radioligands could be used as probes to discriminate GAL receptors (GALR) subtypes using a cell line, RINm5F, that express multiple GALR subtypes. Data from parallel equilibrium binding experiments using the same RINm5F membrane homogenates reveal that [125I]pGAL labels 20% more GALRs with a 2-fold lower affinity than those values identified when using [125I]rGAL. Competition studies using various GAL peptides showed different rank order of potencies depending on the radioligand used. Preincubation of RINm5F membranes with GppNHp, a non-hydrolizable GTP analog, prior to radioligand labeling suggests that a portion of GALRs is precoupled to G proteins. In addition, receptors labeled by [125I]rGAL appear more sensitive to GppNHp-induced uncoupling of G proteins than those labeled by [125I]pGAL. In conclusion, our data suggest that pGAL and rGAL radioligands define different pharmacological profiles of GALRs, and hence, these ligands can be used as pharmacological tools to discriminate GALR subtypes. Additionally, our data suggests that GALRs exist in a precoupled state with their respective G-proteins prior to interaction with the agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号