首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract 1. We observed native populations of Harmonia axyridis (Pallas) around Beijing, China, over 2 years and performed choice and no‐choice mating tests between melanic and succinic (non‐melanic) beetles in the laboratory. 2. Succinic phenotypes outnumbered melanics by 5:1 in autumn, but melanics became equally abundant in spring, supporting previous inferences that melanism is advantageous in winter, but costly in summer. 3. Female H. axyridis expressed mate preference overtly, by rejecting less‐preferred phenotypes, and cryptically, by retaining their eggs for longer periods after matings with less‐preferred males, ostensibly to replace their sperm. 4. Succinic pairs formed more quickly in the spring generation, and melanic pairs in the autumn, and the time to copula was affected by both male and female phenotype. The strength of mate preference was contingent on female phenotype, suggesting melanic alleles had pleiotropic effects. 5. Whereas pair formation was under female control, the duration of copula was under male control and lasted longer in the autumn generation than in the spring. Copulations in the choice test tended to be shorter between similar phenotypes, suggesting that males invested more in dissimilar females when alternative mates were available. 6. Although spring and autumn generations were raised under identical conditions, significant contrasts were observed in their reproductive behaviour. 7. Two alternative hypotheses are advanced to explain why gender‐specific reproductive behaviours might vary between generations: maternally‐mediated epigenetic factors that influence the expression of genes in progeny as a function of maternal environment, and linkage disequilibria among alleles that cycle in frequency seasonally as a function of assortative mating.  相似文献   

2.
The massive numbers of sperm males transfer during a single mating are physiologically costly and the amount of sperm that can be stored is limited. Therefore, males can perform only a finite number of successive copulations without loss of fertility, and males should allocate sperm prudently. We investigated sperm availability and depletion in male black scavenger flies, Sepsis cynipsea (Diptera: Sepsidae), asking whether males adjust copula duration according to nutrition, their sperm stores, their own and their partner’s body size, as predicted by theory. We created a gradient of sperm limitation by restricting dung (their protein resource as adults) and subjecting males to a varying number of copulations. While male fertility did not depend on access to fresh dung (contrary to females), it did decline after three copulations, and more so when males were small. Larger females tended to lay more unfertilized eggs after copulating with previously mated males. However, copula duration was not influenced by a male’s number of previous copulations, and therefore apparently not by his current sperm stores. Nevertheless, copula duration varied with male size, with small males copulating longer, and with female size, as copulations lasted longer with larger females, suggesting that males are investing more sperm in larger, more fecund females. While male copula adjustments to their own nutrition and body size may be simple (proximate) physiological responses, responses to female size indicate more strategic and sophisticated sperm‐allocation strategies than previously thought.  相似文献   

3.
1. For this study a cohort of melanic Harmonia axyridis males homozygous for the spectabilis allele was produced. These were used to produce four kinds of twice‐mated females, comprising all four permutations of melanic and non‐melanic (succinic) males. A series of 12 larvae were then reared from the first and 10th clutches of each female to compare progeny developmental phenotypes. 2. There were no effects of mating treatment on overall female reproductive performance (preoviposition period, 20‐day fecundity, or egg fertility). 3. Age‐specific maternal effects were evident in progeny developmental phenotypes; larvae of 10th clutches developed more slowly, pupation was shorter, and adults emerged at heavier weights. 4. Paternal effects were superimposed on maternal effects and affected progeny independent of their paternity; melanic males induced slower larval development and slower pupation, but only in 10th clutches and only when they mated second. 5. There was a significant three‐way interaction between male mating treatment, clutch number and progeny phenotype, indicating that progeny developmental responses to (mixed) paternal effects varied depending on their own phenotype and the time elapsed since their mother's last mating. 6. Melanic males mating second obtained a P2 advantage over succinic males, which increased from first to 10th clutch, but the reverse was not true when succinic males mated second. Thus, polyandry in H. axyridis facilitates both genetic and epigenetic competition among males while simultaneously enabling the sharing of predominant paternal effects among the progeny of different fathers.  相似文献   

4.
Effects of two different mating regimes on sperm precedencein the two-spot ladybird, Adalia bipunctata, were studied usingthe polymorphic gene for melanism as a marker for paternity.Virgin nonmelanic females (homozygous recessive) were matedto nonmelanic male(s) and then, after laying fertilized eggs,were mated to a melanic male of known genotype. The resultsafter the two successive single matings showed a highly variabledegree of paternity of the second male. Initial multiple matingwith nonmelanic males did not alter the pattern of paternityafter the subsequent single mating with a melanic male, butit had two other effects: (1) the female showed an increasein rejection behavior, and (2) a longer copulation was requiredfor high success of the melanic male. Additional observationsin which families were reared from beetles collected in copulain the field demonstrated that sperm competition also occursunder natural conditions. The outcome of the competition wasvariable with frequent sperm mixing.  相似文献   

5.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

6.
Sperm competition has been a major selective force acting on male and female behaviour. Theory predicts that when sperm compete numerically, selection will favour males that vary the number of sperm they transfer with sperm competition risk. This often leads to increased copula duration when sperm competition risk is high, the selective advantage of which is increased paternity. We investigated the copulatory behaviour of the common dung fly Sepsis cynipsea in relation to male and female size, female mating status, age, and presence or absence of dung. This fly is unusual in that males mate-guard before copula while females use the sperm of previous males for their current clutch. Body size had no effect on copula duration, but duration of first copulations depended on female age, with older females having longer copulations. For females that copulated twice, there was an interaction between female age and mating status influencing copula duration: old females had longer copulations than young females, but second copulas were longer for young females. Residual testis size of nonvirgin males was smaller than for virgins, and testis shrinkage was significantly associated with copula duration, which indicates that males transfer more ejaculate with longer copulations. We therefore conclude that copulation duration and ejaculate transfer vary in accordance with sperm competition theory.  相似文献   

7.
The phenotype‐linked fertility hypothesis proposes that male fertility is advertised via phenotypic signals, explaining female preference for highly sexually ornamented males. An alternative view is that highly attractive males constrain their ejaculate allocation per mating so as to participate in a greater number of matings. Males are also expected to bias their ejaculate allocation to the most fecund females. We test these hypotheses in the African stalk‐eyed fly, Diasemopsis meigenii. We ask how male ejaculate allocation strategy is influenced by male eyespan and female size. Despite large eyespan males having larger internal reproductive organs, we found no association between male eyespan and spermatophore size or sperm number, lending no support to the phenotype‐linked fertility hypothesis. However, males mated for longer and transferred more sperm to large females. As female size was positively correlated with fecundity, this suggests that males gain a selective advantage by investing more in large females. Given these findings, we consider how female mate preference for large male eyespan can be adaptive despite the lack of obvious direct benefits.  相似文献   

8.
We examine data on copula duration in dung flies, Scatophaga stercoraria, in relation to female phenotype. We use a marginal value theorem approach based on the plausible mechanisms of sperm competition to predict the effect of female variation on optimal copula duration, t *, from the male perspective. Future fertilizations are expected to have a trivial effect on t * with fully gravid females, but an increasing relative effect on t * towards completion of oviposition. t * is expected to be affected by female size because of variation in (1) a female's egg content, which increases the maximum egg gain available from a mating, and (2) the female reproductive tract, which affects the rate at which sperm are displaced. In fully gravid females, t * was not dependent on egg number variation, but showed a positive relation with egg content in females that had laid a varying proportion of their mature egg load at the time of mating, and were therefore not fully gravid. Our models predict that if a male can estimate egg content only by the distension of a female's abdomen, t * should increase in a similar way to that seen with 'take-over' females. We predict t * for fully gravid females by assuming that males can monitor female size. The data showed that sperm displacement rate decreased, and average egg content increased, with female size. Under two models for a sperm displacement mechanism, one (which assumes indirect displacement at a rate proportional to the increase in spermathecal volume) predicts the observed relation between t * and female size almost exactly. Small males copulated for longer than large males (as predicted and reported previously). Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

9.
Multiple mating in females is widespread among insects in spite of the risk of predation, disease acquisition and/or physical injury that may occur. One common consequence of female polyandry is competition among sperm from two or more males within the female to fertilize the ova. This competition is an evolutionary driving force that determines a series of adaptations in both males and females. In this work, we examine some behavioral, morphological and physiological characteristics of males and females of two Heteropteran species that are related to their monoandrous/polyandrous mating behavior. Females of Macrolophus pygmaeus (Het. Miridae), the monoandrous species, were coy about accepting a male partner, spent a short time in copula, and received only a small volume of ejaculate. Even so, with only one mating event, they received enough sperm to fertilize most of their ova (21 days after mating all females were still fertile). In contrast, females of Nesidiocoris tenuis (Het. Miridae), the polyandrous species, readily accepted any mating partner, spent a long time in copula and received a large volume of ejaculate. However, these latter females soon ran out of sperm and needed to mate periodically in order to maintain a sufficient sperm supply to fertilize their eggs. As predicted, based on current theory (Simmons, 2001b), an increased investment in spermatogenesis was detected in N. tenuis with relation to M. pygmaeus. The males of the polyandrous species had larger accessory reproductive glands, seminal vesicles, testes and sperm cells than those of the monoandrous species.  相似文献   

10.
In the wild, male chameleon grasshoppers (Kosciuscola tristis) are frequently observed mounted on the back of females even when not in copula, and will fight off other usurping males. If this behaviour is mate guarding and reflects investment in male mate choice, then we expect males to preferably guard females based on reliable cues of quality. Cues for female quality likely include female size and egg development that together may indicate fecundity. We investigated male mate choice in the field expressed as mate-guarding preference, by comparing size and egg development in guarded and unguarded females. We found no difference between guarded and unguarded females in measures of fecundity or body size. The majority of females sampled did not contain any viable eggs. This finding suggests that male K. tristis indiscriminately guard females in a scramble mating system.  相似文献   

11.
Males of the green-veined white butterfly (Pieris napi L.) transfer large ejaculates that represent on average 15% of their body mass when mating for a first time. Shortly after mating a male is able to transfer only a small ejaculate when mating a second time. Male ejaculate production plays a crucial role in the mating system ofP. napi because females use male-derived nutrients for egg production and somatic maintenance. Here we study how timing of female rematings and copulation duration are influenced by the mating history of their mates and, also, study if females exert mate choice to minimize their mating costs. Mating with a recently mated male increased female mating costs by increasing time in copula and mating frequency. Virgin females that mated with virgin males remated after an average of 6 days, whereas virgin females that mated with recently mated males remated after an average of 2 days. Moreover, copulations involving recently mated males lasted on average almost 7 h, whereas copulations involving virgin males lasted on average 2 h. Recently mated males were eager to remate, in spite of the fact that the size of the ejaculate they transfer is small and that they remain in copula for a long time. Hence it seems that males are more successful in the sexual conflict over mating decisions and that females do not minimize mating costs by choosing to mate preferentially with virgin males.  相似文献   

12.
In animals with internal fertilization, sperm competition among males can favor the evolution of male ejaculate traits that are detrimental to females. Female mating preferences, in contrast, often favor traits in males that are beneficial to females, yet little is known about the effect of these preferences on the evolution of male ejaculates. A necessary condition for female preferences to affect the evolution of male ejaculate characteristics is that females select mates based on a trait correlated with ejaculate quality. Previous work has shown that females of the variable field cricket, Gryllus lineaticeps, prefer males that produce calling songs containing faster and longer chirps. In this study, we tested the hypothesis that females receive more beneficial ejaculates from preferred males. Females were placed on either a high- or a reduced-nutrition diet then mated twice to a male of known song phenotype. Females received only sperm and seminal fluid from males during these matings. There was no effect of male song phenotype on any fitness component for females on the high-nutrition diet. Reduced-nutrition females mated to males that produced preferred song types, however, lived longer, produced more eggs, produced more fertile eggs, and had a higher proportion of their eggs fertilized than those mated to other males. The life-span benefit was positively associated with male chirp duration, and the reproductive benefits were positively associated with male chirp rate. We explored two possible mechanisms for the life span and reproductive benefits. First, a path analysis suggested that part of the effect of male chirp duration on female life span may have been indirect; females mated to males that produced longer chirps showed delayed oviposition, and females that delayed oviposition lived longer. Males that produce longer chirps may thus transfer fewer or less potent oviposition stimulants to females in their seminal fluid. Second, there was a positive correlation between male chirp rate and the number of sperm transferred to females. The fertility benefit may thus have resulted from females receiving more sperm from males that produce faster chirps. Finally, there was a negative phenotypic correlation between male chirp rate and chirp duration, suggesting that females may have to trade off the life span and reproduction benefits when selecting a mate.  相似文献   

13.
Multiple mating allows females to obtain material (more sperm and nutrient) and/or genetic benefits. The genetic benefit models require sperm from different males to fertilize eggs competitively or the offspring be fathered by multiple males. To maximize genetic benefits from multiple mating, females have evolved strategies to prefer novel versus previous mates in their subsequent matings. However, the reproductive behavior during mate encounter, mate choice and egg laying in relation to discrimination and preference between sexes has been largely neglected. In the present study, we used novel and previous mate treatments and studied male and female behavior and reproductive output in Spodoptera litura. The results of this study do not support the sperm and nutrient replenishment hypotheses because neither the number of mates nor the number of copulations achieved by females significantly increased female fecundity, fertility and longevity. However, females showed different oviposition patterns when facing new versus previous mates by slowing down oviposition, which allows the last male has opportunities to fertilize her eggs and the female to promote offspring diversity. Moreover, females that have novel males present called earlier and more than females that have their previous mates present, whereas no significant differences were found on male courtship between treatments. These results suggest that S. litura females can distinguish novel from previous mates and prefer the former, whereas males generally remate regardless of whether the female is a previous mate or not. In S. litura, eggs are laid in large clusters and offspring competition, inbreeding and disease transfer risks are thus increased. Therefore, offspring diversity should be valuable for S. litura, and genetic benefits should be the main force behind the evolution of female behavioral strategies found in the present study.  相似文献   

14.
Sexual conflicts due to divergent male and female interests in reproduction are common in parasitic Hymenoptera. The majority of parasitoid females are monandrous, whereas males are able to mate repeatedly. Thus, accepting only a single mate might be costly when females mate with a sperm‐depleted male, which may not transfer a sufficient amount of sperm. In the present study, we investigated the reproductive performance in the parasitoid Lariophagus distinguendus Först. (Hymenoptera: Pteromalidae) and studied whether mating with experimentally sperm‐depleted males increases the tendency of females to remate. Males were able to mate with up to 17 females offered in rapid succession within a 10‐h test period. The resulting female offspring, as an indirect measure of sperm transfer, remained constant during the first six matings and then decreased successively with increasing number of copulations by the males. Experimentally sperm‐depleted males continued to mate even if they transferred only small amounts or no sperm at all. Unlike males, the majority of females mated only once during a 192‐h test period. A second copulation was observed only in a few cases (maximum 16%). The frequency of remating was not influenced by the mating status of the first male the females had copulated with, suggesting that these events are not controlled by sperm deficiency of the females. Furthermore, we investigated male courtship behaviour towards mated females. Male courtship intensity towards mated females decreased with increasing time. However, females that had mated with an experimentally sperm‐depleted male did not elicit stronger or longer‐lasting behavioural responses in courting males than those that had mated with a virgin male. As the observed behaviours in L. distinguendus are known to be elicited by a courtship pheromone, these results suggest that females no longer invest in pheromone biosynthesis after mating (as indicated by ceasing behavioural responses of courting males), irrespective of whether they have received a sufficient amount of sperm or not. We discuss the results with respect to a possible mating strategy of sperm‐depleted males.  相似文献   

15.
Based on the phenotype‐linked fertility hypothesis, sexual selection should favour females that can accurately assess the recent mating history of available sexual partners and preferentially avoid mating with recently‐mated males [who may be sperm depleted (SD)] so as to minimize the risk of their eggs not being fertilized. This hypothesis has received to date only limited attention and empirical support. Therefore, in the current study, we investigated experimentally whether females of a vertebrate species, the Trinidadian guppy (Poecilia reticulata), are able to assess the recent mating history of males, and thus potentially their functional fertility, and choose to avoid mating with males that appear to have recently mated and who may be sperm limited. Individual virgin females were first given a dichotomous choice between a male that had not been recently observed to interact sexually with another female (i.e. not sperm‐depleted) and another male that had been observed to interact sexually with a female (i.e. potentially sperm‐depleted) as sexual partners. Paired males were matched for body length and coloration. Immediately following this test, the focal females were subjected to a free‐swimming mate‐choice test using the same paired stimulus males. As predicted, on average, female guppies avoided the apparently recently‐mated (and potentially sperm‐depleted) male and exhibited a significant preference for the other male not recently observed mating (and thus not likely sperm limited) during both tests. We do not yet fully understand the underlying mechanisms of this preference. Therefore, further research on the particular cues that females use to assess the recent mating history and fertility status of males is required.  相似文献   

16.
When females mate multiply (polyandry) both pre‐ and post‐copulatory sexual selection can occur. Sperm competition theory predicts there should be a trade‐off between investment in attracting mates and investment in ejaculate quality. In contrast, the phenotype‐linked fertility hypothesis predicts a positive relationship should exist between investment in attracting mates and investment in ejaculate quality. Given the need to understand how pre‐ and post‐copulatory sexual selection interacts, we investigated the relationship between secondary sexual traits and ejaculate quality using the European house cricket, Acheta domesticus. Although we found no direct relationship between cricket secondary sexual signals and ejaculate quality, variation in ejaculate quality was dependent on male body weight and mating latency: the lightest males produced twice as many sperm as the heaviest males but took longer to mate with females. Our findings are consistent with current theoretical models of sperm competition. Given light males may have lower mating success than heavy males because females take longer to mate with them in no‐choice tests, light males may be exhibiting an alternative reproductive tactic by providing females with more living sperm. Together, our findings suggest that the fitness of heavy males may depend on pre‐copulatory sexual selection, while the fitness of light males may depend on post‐copulatory fertilization success.  相似文献   

17.
Females across many taxa may mate with several males or mate more than once with the same male within one reproductive event. Although many researchers have discussed the effects of multiple mating on reproductive success of females, few studies have attempted to disentangle whether the reproductive success of females differs with respect to whether females mate with multiple males or mate more than once with one male. In this study, we hypothesized that female leopard geckos (Eublepharis macularius) increase aspects of their reproductive success, such as fecundity, fertility and relative clutch mass, by mating more than once within one reproductive event, either by mating repeatedly with the same male or multiply mating with different males. We controlled for the potentially confounding variables of mating frequency and mate number by allowing females to mate once with one male, twice with the same male, or twice with two different males. We found that females that mated with more than one male laid more clutches, exhibited increased egg fertility and invested more in clutches relative to females that mated only once with one male, whereas females that mated twice to the same male were intermediate for these variables. Thus, reproductive success is higher among female leopard geckos that mated with more than one male compared to female leopard geckos that mated only once.  相似文献   

18.
Abstract  1. Large male seaweed flies (Diptera: Coelopidae) are more likely to mate than smaller males. This is due to sexual conflict over mating, by which females physically resist male attempts to copulate. In some species, large males are simply more efficient at overpowering female resistance.
2. Female reluctance to mate is likely to have evolved due to the costs of mating to females. In many dipterans, males manipulate female behaviour through seminal proteins that have evolved through sperm competition. This behavioural manipulation can be costly to females, for example forcing females to oviposit in sub-optimal conditions and increasing their mortality.
3. Previous work has failed to identify any ubiquitous costs of mating to female coelopids. The work reported here was designed to investigate the effects of exposure to oviposition sites ( Fucus algae) on the reproductive behaviour of four species of coelopid. Algae deposition in nature is stochastic and females mate with multiple males in and around oviposition sites. Spermatogenesis is restricted to the pupal stage and there is last-male sperm precedence. It was predicted that males would avoid wasting sperm and would be more willing to mate, and to remain paired with females for longer, when exposed to oviposition material compared with control males. Females were predicted to incur longevity costs of mating if mating increased their rate of oviposition, especially in the presence of algae.
4. The behaviour of males of all four species concurred with the predictions; however mating did not affect female receptivity, oviposition behaviour, or longevity. Exposure to algae induced oviposition and increased female mortality in all species independently of mating and egg production. The evolutionary ecology of potential costs of mating to female coelopids are discussed in the light of these findings.  相似文献   

19.
Apparently stimulatory male copulatory behaviour (MCB) is widespread among arthropods and it could help males to increase their fitness by inducing favourable behavioural and physiological changes in females. The empirical study of female responses to MCB is hindered because its experimental manipulation is difficult. We have developed a technique for reducing, with minimal disturbance, the frequency of MCB in the true bug Stenomacra marginella. Here, we test the idea that, in a polygamous species like S. marginella, sexual selection favours males whose MCB induces females to increase copula duration (thereby increasing the amount of sperm and accessory substances transferred), reduce their sexual receptivity to additional males and increase their rate of oviposition. Males prevented from performing MCB increased their rate of attempts to perform MCB. Copulations with previously mated females were of longer duration than those with virgin females, probably as a male adaptation for sperm competition, and MCB could have played a role in inducing this effect. Partial or total experimental reduction of MCB frequency had no effect on remating rates, because most females accepted remating at the first opportunity (1 day after their first copula). The probability of egg laying was reduced in females whose first mate was partially prevented from performing copulatory courtship, but not in females whose first mate was completely prevented from performing copulatory courtship. This is an intriguing result and further experiments are needed to understand its causes. We hypothesize that MCB evolved as a result of sexual selection.  相似文献   

20.
In several species of fish, females select males that are already guarding eggs in their nests. It is a matter of debate as to whether a female selects a good nest site for her offspring (natural selection) or a male for his attractiveness (sexual selection). The golden egg bug, Phyllomorpha laciniata Vill, resembles fish in the sense that mating males carry more eggs than single males, but in the bugs, female mate choice is decoupled from egg site choice. The sexual selection hypothesis predicts that if females select males using male egg load as a cue for male quality, they should not mate with a male when eggs are removed, regardless of his mating attempts. When individual females were enclosed with an egg-loaded male and an unloaded male, they mated equally often with both males, although the loaded males courted more. In addition, when only successful males were used, females mated equally often with the loaded male and the unloaded male irrespective of sex ratio. Male choice rather than female choice affected mating frequency when sex ratio was equal. Therefore, females do not select the male by the eggs he carries, but successful males may receive many eggs due to egg dumping by alien females while they mate or as a consequence of mate guarding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号