共查询到18条相似文献,搜索用时 46 毫秒
1.
改进的遗传算法(GA)自动优化支持向量机(SVM)参数,同步决策最优特征子集。新颖的分组多基因交叉技术保留了基因小组中的信息,而且允许后代继承更多的来自染色体的遗传信息。该算法促进可行解集中的高质量染色体信息交换,提高了解空间的搜索能力。实验结果说明:改进GA-SVM不仅可决策出与疾病相关的重要特征变量、优化SVM参数,而且可提升分类性能。与前馈BP神经网络及自适应模糊推理系统两种学习算法的比较表明,改进GA-SVM具有更好地表现。 相似文献
2.
BP神经网络在农产品生产与检测中的应用 总被引:2,自引:1,他引:2
人工神经网络是人工智能领域中发展迅速的信息处理技术之一,充分发挥人工神经网络的技术优势,是在农业领域内实现生产劳动自动化的重要途径.本文对BP网络模型及其算法进行了分析研究,从农产品的外观评判、生产预测建模和分类分级鉴定等方面综述了国内外最新研究进展,并展望了今后的应用前景。 相似文献
3.
森林生物量的定量估算为全球碳储量、碳循环研究提供了重要的参考依据。该研究采用黑龙江长白山地区的TM影像和133块森林资源一类清查样地的数据, 选取地学参数、遥感反演参数等71个自变量分别构建多元逐步回归模型、传统BP (back propagation)神经网络模型和基于高斯误差函数的BP神经网络改进模型(Gaussian error function, Erf-BP), 进而估算该地区的森林生物量, 并进行比较分析。结果表明, 多元逐步回归模型估测的森林生物量预测精度为75%, 均方根误差为26.87 t·m-2; 传统BP神经网络模型估测森林生物量的预测精度为80.92%, 均方根误差为21.44 t·m-2; Erf-BP估测森林生物量的预测精度为82.22%, 均方根误差为20.83 t·m-2。可见, 改进后的Erf-BP能更好地模拟生物量与各个因子之间的关系, 估算精度更高。 相似文献
4.
两种过滤特征基因选择算法的有效性研究 总被引:2,自引:0,他引:2
对基因表达谱进行特征基因选择不仅能改善疾病分类方法的效能,而且为寻找与疾病相关的特征基因提供新的途径.通过比较用调整p值的t检验、非参数评分两种特征基因选择算法后和未进行选择时支持向量机(SVM)分类器的分类性能、支持向量(SV)的吻合度、错分样本ID的吻合度和对样本均匀翻倍后的稳定性.结果发现:特征选择后线性、核函数为二阶多项式和径向基的SVM分类性能明显提高;特征选择前后的SV及错分样本ID的吻合度均较高;SVM的稳定性较好.由此得出结论:这两种特征选择算法具有一定的有效性. 相似文献
5.
将63例II型糖尿病患者以及140例正常人皮肤的自体荧光光谱分为训练集和测试集两类,针对常用的四种核函数,运用交叉验证、网格寻优法计算最优分类参数,然后结合训练集建模并对测试集分类,结果显示使用径向基核函数时分类效果相对最佳。在此基础上,构建了一种基于线性核函数与径向基核函数的混合核函数,该核函数对人体皮肤自体荧光光谱的分类效果较之于径向基核函数更优,其分类正确率为82.61%,敏感性为69.57%,特异性为95.65%。研究结果表明支持向量机可用于人体皮肤自体荧光光谱的分类,有助于提高糖尿病筛查的正确率。 相似文献
6.
ARIMA与SVM组合模型在害虫预测中的应用 总被引:2,自引:0,他引:2
害虫发生是一种复杂、 动态时间序列数据, 单一预测模型都是基于线性或非线性数据, 不能同时捕捉害虫发生的线性和非线性规律, 很难达到理想的预测精度。本研究首先采用差分自回归移动平均模型对昆虫发生时间序列进行线性建模, 然后采用支持向量机对非线性部分进行建模, 最后得到两种模型的组合预测结果。将组合模型应用到松毛虫Dendrolimus punctatus发生面积的预测, 实验结果表明组合模型的预测精度明显优于单一模型, 发挥了两种模型各自的优势。组合模型是一种切实可行的害虫预测预报方法。 相似文献
7.
支持向量机与神经网络的关系研究 总被引:2,自引:0,他引:2
支持向量机是一种基于统计学习理论的新颖的机器学习方法,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点,该方法已经广泛用于解决分类和回归问题.本文将结构风险函数应用于径向基函数网络学习中,同时讨论了支持向量回归模型和径向基函数网络之间的关系.仿真实例表明所给算法提高了径向基函数网络的泛化性能. 相似文献
8.
支持向量机在害虫发生量预测中的应用 总被引:6,自引:0,他引:6
害虫发生量与其影响因子之间具有复杂的非线性和时滞性关系,传统方法不能很好的分析和拟合高度非线性的害虫发生量变化规律,导致预测精度不理想。为了有效构建害虫发生量与其影响因子之间复杂的非线性关系模型,提高害虫发生量预测精度,提出一种基于支持向量机的害虫发生量预测方法。该方法首先通过F测验对害虫发生量的最佳时滞阶数进行确定,并利用最佳时滞阶数对样本进行重构;然后利用前向浮动因子筛选法对害虫发生量的影响因子进行筛选,筛选出对预测结果贡献大的影响因子;最后采用10折交叉验证得到害虫发生量的最优预测模型。采用粘虫的幼虫发生密度数据在Mat-lab7.0平台下对该方法进行测试与分析,实验结果表明,相对于其它预测方法,支持向量机提高了害虫发生量的预测精度,克服了传统方法的缺陷,更适合于非线性、小样本的害虫发生量预测。 相似文献
9.
10.
11.
12.
13.
Vijay Tripathi Dwijendra Kumar Gupta 《Journal of biomolecular structure & dynamics》2013,31(10):1575-1582
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition. 相似文献
14.
A. A. C. Alves R. Espigolan T. Bresolin R. M. Costa G. A. Fernandes Júnior R. V. Ventura R. Carvalheiro L. G. Albuquerque 《Animal genetics》2021,52(1):32-46
This study aimed to assess the predictive ability of different machine learning (ML) methods for genomic prediction of reproductive traits in Nellore cattle. The studied traits were age at first calving (AFC), scrotal circumference (SC), early pregnancy (EP) and stayability (STAY). The numbers of genotyped animals and SNP markers available were 2342 and 321 419 (AFC), 4671 and 309 486 (SC), 2681 and 319 619 (STAY) and 3356 and 319 108 (EP). Predictive ability of support vector regression (SVR), Bayesian regularized artificial neural network (BRANN) and random forest (RF) were compared with results obtained using parametric models (genomic best linear unbiased predictor, GBLUP, and Bayesian least absolute shrinkage and selection operator, BLASSO). A 5‐fold cross‐validation strategy was performed and the average prediction accuracy (ACC) and mean squared errors (MSE) were computed. The ACC was defined as the linear correlation between predicted and observed breeding values for categorical traits (EP and STAY) and as the correlation between predicted and observed adjusted phenotypes divided by the square root of the estimated heritability for continuous traits (AFC and SC). The average ACC varied from low to moderate depending on the trait and model under consideration, ranging between 0.56 and 0.63 (AFC), 0.27 and 0.36 (SC), 0.57 and 0.67 (EP), and 0.52 and 0.62 (STAY). SVR provided slightly better accuracies than the parametric models for all traits, increasing the prediction accuracy for AFC to around 6.3 and 4.8% compared with GBLUP and BLASSO respectively. Likewise, there was an increase of 8.3% for SC, 4.5% for EP and 4.8% for STAY, comparing SVR with both GBLUP and BLASSO. In contrast, the RF and BRANN did not present competitive predictive ability compared with the parametric models. The results indicate that SVR is a suitable method for genome‐enabled prediction of reproductive traits in Nellore cattle. Further, the optimal kernel bandwidth parameter in the SVR model was trait‐dependent, thus, a fine‐tuning for this hyper‐parameter in the training phase is crucial. 相似文献
15.
Ling Gao 《Analytical biochemistry》2010,405(2):184-149
Two chemometric methods, WPT-ERNN and least square support vector machines (LS-SVM), were developed to perform the simultaneous spectrophotometric determination of nitrophenol-type compounds with overlapping spectra. The WPT-ERNN method is based on Elman recurrent neural network (ERNN) regression combined with wavelet packet transform (WPT) preprocessing and relies on the concept of combining the idea of WPT denoising with ERNN calibration for enhancing the noise removal ability and the quality of regression without prior separation. The LS-SVM technique is capable of learning a high-dimensional feature with fewer training data and reducing the computational complexity by requiring the solution of only a set of linear equations instead of a quadratic programming problem. The relative standard errors of prediction (RSEPs) obtained for all components using WPT-ERNN, ERNN, LS-SVM, partial least squares (PLS), and multivariate linear regression (MLR) were compared. Experimental results showed that the WPT-ERNN and LS-SVM methods were successful for the simultaneous determination of nitrophenol-type compounds even when severe overlap of spectra was present. 相似文献
16.
在不依赖于序列相似性的条件下,蛋白质折叠子识别是一种分析蛋白质结构的重要方法.提出了一种三层支持向量机融合网络,从蛋白质的氨基酸序列出发,对27类折叠子进行识别.融合网络使用支持向量机作为成员分类器,采用“多对多”的多类分类策略,将折叠子的6种特征分为主要特征和次要特征,构建了多个差异的融合方案,然后对这些融合方案进行动态选择得到最终决策.当分类之前难以确定哪些参与组合的特征种类能够使分类结果最好时,提供了一种可靠的解决方案来自动选择特征信息互补最大的组合,保证了最佳分类结果.最后,识别系统对独立测试样本的总分类精度达到61.04%.结果和对比表明,此方法是一种有效的折叠子识别方法. 相似文献
17.
Because the protein's function is usually related to its subcellular localization, the ability to predict subcellular localization directly from protein sequences will be useful for inferring protein functions. Recent years have seen a surging interest in the development of novel computational tools to predict subcellular localization. At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of success for specific organisms and for certain localization categories. A number of authors have noticed that sequence similarity is useful in predicting subcellular localization. For example, Nair and Rost (Protein Sci 2002;11:2836-2847) have carried out extensive analysis of the relation between sequence similarity and identity in subcellular localization, and have found a close relationship between them above a certain similarity threshold. However, many existing benchmark data sets used for the prediction accuracy assessment contain highly homologous sequences-some data sets comprising sequences up to 80-90% sequence identity. Using these benchmark test data will surely lead to overestimation of the performance of the methods considered. Here, we develop an approach based on a two-level support vector machine (SVM) system: the first level comprises a number of SVM classifiers, each based on a specific type of feature vectors derived from sequences; the second level SVM classifier functions as the jury machine to generate the probability distribution of decisions for possible localizations. We compare our approach with a global sequence alignment approach and other existing approaches for two benchmark data sets-one comprising prokaryotic sequences and the other eukaryotic sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to investigate the relationship between sequence homology and subcellular localization. Our results, which are consistent with previous studies, indicate that the homology search approach performs well down to 30% sequence identity, although its performance deteriorates considerably for sequences sharing lower sequence identity. A data set of high homology levels will undoubtedly lead to biased assessment of the performances of the predictive approaches-especially those relying on homology search or sequence annotations. Our two-level classification system based on SVM does not rely on homology search; therefore, its performance remains relatively unaffected by sequence homology. When compared with other approaches, our approach performed significantly better. Furthermore, we also develop a practical hybrid method, which combines the two-level SVM classifier and the homology search method, as a general tool for the sequence annotation of subcellular localization. 相似文献
18.