首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.  相似文献   

2.
Alvarez CE  Akey JM 《Mammalian genome》2012,23(1-2):144-163
Differences in the content and organization of DNA, collectively referred to as structural variation, have emerged as a major source of genetic and phenotypic diversity within and between species. In addition, structural variation provides an important substrate for evolutionary innovations. Here, we review recent progress in characterizing patterns of canine structural variation within and between breeds, and in correlating copy number variants (CNVs) with phenotypes. Because of the extensive phenotypic diversity that exists within and between breeds and the tantalizing examples of canine CNVs that influence traits such as skin wrinkling in Shar-Pei, dorsal hair ridge in Rhodesian and Thai Ridgebacks, and short limbs in many breeds such as Dachshunds and Corgis, we argue that domesticated dogs are uniquely poised to contribute novel insights into CNV biology. As new technologies continue to be developed and refined, the field of canine genomics is on the precipice of a deeper understanding of how structural variation and CNVs contribute to canine genetic diversity, phenotypic variation, and disease susceptibility.  相似文献   

3.
保护生物学一新分支学科——保护遗传学   总被引:5,自引:0,他引:5  
研究人类对生物多样性的影响以及防止物种灭绝是保护生物学的两个主要目的。随着环境日益恶化、分子遗传学的迅速发展以及保护生物学和分子遗传学的不为民相互渗透,和产生了一全新的分支学科--保护遗传学。保护遗传学是保护生物学研究中的一个核心部分,主要研究濒危物种的遗传多样性和保护物种的进化潜力。目前保护遗传学已成为国际上的一个研究热点,但在我国才刚刚起步,为此,本文就保护,遗传学的产生和发展及其研究内容和意义作一简要介绍,以推动我国在该方面的研究。  相似文献   

4.
There is incredible morphological and behavioral diversity among the hundreds of breeds of the domestic dog, CANIS FAMILIARIS. Many of these breeds have come into existence within the last few hundred years. While there are obvious phenotypic differences among breeds, there is marked interbreed genetic homogeneity. Thus, study of canine genetics and genomics is of importance to comparative genomics, evolutionary biology and study of human hereditary diseases. The most recent version of the map of the canine genome is comprised of 3,270 markers mapped to 3,021 unique positions with an average intermarker distance of approximately 1 Mb. The markers include approximately 1,600 microsatellite markers, about 1,000 gene-based markers, and almost 700 bacterial artificial chromosome-end markers. Importantly, integration of radiation hybrid and linkage maps has greatly enhanced the utility of the map. Additionally, mapping the genome has led directly to characterization of microsatellite markers ideal for whole genome linkage scans. Thus, workers are now able to exploit the canine genome for a wide variety of genetic studies. Finally, the decision to sequence the canine genome highlights the dog's evolutionary and physiologic position between the mouse and human and its importance as a model for study of mammalian genetics and human hereditary diseases.  相似文献   

5.
Community genetics is a synthesis of community ecology and evolutionary biology. It examines how genetic variation within a species affects interactions among species to change ecological community structure and diversity. The use of community genetics approaches has greatly expanded in recent years and the evidence for ecological effects of genetic diversity is growing. The goal of current community genetics research is to determine the circumstances in which, and the mechanisms by which community genetic effects occur and is the focus of the papers in this special issue. We bring a new group of researchers into the community genetics fold. Using a mixture of empirical research, literature reviews and theoretical development, we introduce novel concepts and methods that we hope will enable us to develop community genetics into the future.  相似文献   

6.
The continent of Africa is thought to be the site of origin of all modern humans and is the more recent origin of millions of African Americans. Although Africa has the highest levels of human genetic diversity both within and between populations, it is under-represented in studies of human genetics. Recent advances have been made in understanding the origins of modern humans within Africa, the rate of adaptations due to positive selection, the routes taken in the first migrations of modern humans out of Africa, and the degree of admixture with archaic populations. Africa is also in dire need of effective medical interventions, and studies of genetic variation in Africans will shed light on the genetic basis of diseases and resistance to infectious diseases. Thus, we have tremendous potential to learn about human variation and evolutionary history and to positively impact human health care from studies of genetic diversity in Africa.  相似文献   

7.
D. Curnoe  A. Thorne   《HOMO》2003,53(3):201-224
Despite the remarkable developments in molecular biology over the past three decades, anthropological genetics has had only limited impact on systematics in human evolution. Genetics offers the opportunity to objectively test taxonomies based on morphology and may be used to supplement conventional approaches to hominid systematics. Our analyses, examining chromosomes and 46 estimates of genetic distance, indicate there may have been only around 4 species on the direct line to modern humans and 5 species in total. This contrasts with current taxonomies recognising up to 23 species.

The genetic proximity of humans and chimpanzees has been used to suggest these species are congeneric. Our analysis of genetic distances between them is consistent with this proposal. It is time that chimpanzees, living humans and all fossil humans be classified in Homo. The creation of new genera can no longer be a solution to the complexities of fossil morphologies. Published genetic distances between common chimpanzees and bonobos, along with evidence for interbreeding, suggest they should be assigned to a single species.

The short distance between humans and chimpanzees also places a strict limit on the number of possible evolutionary side branches that might be recognised on the human lineage. All fossil taxa were genetically very close to each other and likely to have been below congeneric genetic distances seen for many mammals.

Our estimates of genetic divergence suggest that periods of around 2 million years are required to produce sufficient genetic distance to represent speciation. Therefore, Neanderthals and so-called H. erectus were genetically so close to contemporary H. sapiens they were unlikely to have been separate species. Thus, it is likely there was only one species of human (H. sapiens) for most of the last 2 million years. We estimate the divergence time of H. sapiensfrom 16 genetic distances to be around 1.7 Ma which is consistent with evidence for the earliest migration out of Africa. These findings call into question the mitochondrial «African Eve» hypothesis based on a far more recent origin for H. sapiens and show that humans did not go through a bottleneck in their recent evolutionary history.

Given the large offset in evolutionary rates of molecules and morphology seen in human evolution, Homo species are likely to be characterised by high levels of morphological variation and low levels of genetic variability. Thus, molecular data suggest the limits for intraspecific morphological variation used by many palaeoanthropologists have been set too low. The role of phenotypic plasticity has been greatly underestimated in human evolution.

We call into question the use of mtDNA for studies of human evolution. This DNA is under strong selection, which violates the assumption of selective neutrality. This issue should be addressed by geneticists, including a reassessment of its use for molecular clocks. There is a need for greater cooperation between palaeoanthropologists and anthropological geneticists to better understand human evolution and to bring palaeoanthropology into the mainstream of evolutionary biology.  相似文献   


8.
In this review, I consider the contribution that common evening primrose (Oenothera biennis) has made towards integrating the ecology, evolution and genetics of species interactions. Oenothera biennis was among the earliest plant models in genetics and cytogenetics and it played an important role in the modern synthesis of evolutionary biology. More recently, population and ecological genetics approaches have provided insight into the patterns of genetic variation within and between populations, and how a combination of abiotic and biotic factors maintain and select on heritable variation within O. biennis populations. From an ecological perspective, field experiments show that genetic variation and evolution within populations can have cascading effects throughout communities. Plant genotype affects the preference and performance of individual arthropod populations, as well as the composition, biomass, total abundance and diversity of arthropod species on plants. A combination of experiments and simulation models show that natural selection on specific plant traits can drive rapid ecological changes in these same community variables. At the patch level, increasing genotypic diversity leads to a greater abundance and diversity of omnivorous and predaceous arthropods, which is also associated with increased biomass and fecundity of plants in genetically diverse patches. Finally, in questioning whether a community genetics perspective is needed in biology, I review several multifactorial experiments which show that plant genotype often explains as much variation in community variables as other ecological factors typically identified as most important in ecology. As a whole, research in the O. biennis system has contributed to a more complete understanding of the dynamic interplay between ecology, evolution and genetics.  相似文献   

9.
Evidence is growing that human modification of landscapes has dramatically altered evolutionary processes. In urban population genetic studies, urbanization is typically predicted to act as a barrier that isolates populations of species, leading to increased genetic drift within populations and reduced gene flow between populations. However, urbanization may also facilitate dispersal among populations, leading to higher genetic diversity within, and lower differentiation between, urban populations. We reviewed the literature on nonadaptive urban evolution to evaluate the support for each of these urban fragmentation and facilitation models. In a review of the literature with supporting quantitative analyses of 167 published urban population genetics studies, we found a weak signature of reduced within‐population genetic diversity and no evidence of consistently increased between‐population genetic differentiation associated with urbanization. In addition, we found that urban landscape features act as barriers or conduits to gene flow, depending on the species and city in question. Thus, we speculate that dispersal ability of species and environmental heterogeneity between cities contributes to the variation exhibited in our results. However, >90% of published studies reviewed here showed an association of urbanization with genetic drift or gene flow, highlighting the strong impact of urbanization on nonadaptive evolution. It is clear that species biology and city heterogeneity obscure patterns of genetic drift and gene flow in a quantitative analysis. Thus, we suggest that future research makes comparisons of multiple cities and nonurban habitats, and takes into consideration species' natural history, environmental variation, spatial modelling and marker selection.  相似文献   

10.
The case studies of population genetics focus on intraspecific variation, but most cases--at least where the variation is polymorphic--deal with characters that are not directly linked to organismic structure or ontogeny. Conversely, the case studies of evolutionary developmental biology focus directly on structure/ontogeny, but usually involve only interspecific comparisons. To integrate these complementary approaches, it is desirable to have a model system that permits study of intraspecific variation in development, using a character whose genetic basis either is already known or can be elucidated. Segment number in geophilomorph centipedes is proposed as a possible model system of this kind. Segment number is variable in natural populations of geophilomorphs, while in the other centipede orders it is fixed, either completely (scutigeromorphs, lithobiomorphs), or at least within species (scolopendromorphs). Statistical analysis of data on the extent of variation in different geophilomorph species suggests that segment number may be of selective importance, rather than the variation being merely an inevitable consequence of the difficulty of achieving a high degree of repeatability when there is a large number of segments.  相似文献   

11.
白逢彦 《微生物学报》2023,63(5):1748-1770
酿酒酵母(Saccharomyces cerevisiae)被广泛应用于酒类酿造和食品发酵等行业,其被人类利用的历史已有近万年。酿酒酵母也是遗传学、分子生物学、基因组学和合成生物学等研究中常用的模式生物。近年来研究者对其自然和驯养种群进行了全球范围的生态学、群体遗传学和群体基因组学等方面的研究,更新了对其生态分布、遗传多样性、自然进化和驯养史以及进化动力等方面的认知。发现酿酒酵母在原始森林等自然环境中普遍存在,并可能偏好阔叶树树干、腐木和周围土壤等生境。中国酿酒酵母的遗传多样性显著高于世界其他地区,该物种最古老的谱系也仅发现于中国,说明中国可能是该物种的起源地。生态适应是塑造该物种群体结构的主要力量,导致其野生和驯养群体之间的明显分化。驯养群体又分化为固态发酵和液态发酵两大类群,每个类群内又形成不同的驯养谱系。该物种野生群体的遗传多样性远高于其驯养群体,而野生群体遗传多样性的形成主要由中性突变引起。中国野生和驯养群体在麦芽糖利用能力、基因组杂合性、子囊孢子形成率和孢子活力等方面表现出显著差异,表明这2个群体采取不同的生活策略来适应其不同的生活环境。驯养群体通过群体或谱系特异性基因拷贝数...  相似文献   

12.
Over thousands of years humans changed the genetic and phenotypic composition of several organisms and in the process transformed wild species into domesticated forms. From this close association, domestic animals emerged as important models in biomedical and fundamental research, in addition to their intrinsic economical and cultural value. The domestic rabbit is no exception but few studies have investigated the impact of domestication on its genetic variability. In order to study patterns of genetic structure in domestic rabbits and to quantify the genetic diversity lost with the domestication process, we genotyped 45 microsatellites for 471 individuals belonging to 16 breeds and 13 wild localities. We found that both the initial domestication and the subsequent process of breed formation, when averaged across breeds, culminated in losses of ~20% of genetic diversity present in the ancestral wild population and domestic rabbits as a whole, respectively. Despite the short time elapsed since breed diversification we uncovered a well-defined structure in domestic rabbits where the FST between breeds was 22%. However, we failed to detect deeper levels of structure, probably consequence of a recent and single geographic origin of domestication together with a non-bifurcating process of breed formation, which were often derived from crosses between two or more breeds. Finally, we found evidence for intrabreed stratification that is associated with demographic and selective causes such as formation of strains, colour morphs within the same breed, or country/breeder of origin. These additional layers of population structure within breeds should be taken into account in future mapping studies.  相似文献   

13.
Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architecture more similar to other outcrossing organisms than to self-pollinating crops and model plants. In this review, we summarize recent advances in maize genetics, including the development of powerful populations for genetic mapping and genome-wide association studies (GWAS), and the insights these studies yield on the mechanisms underlying complex maize traits. Most maize traits are controlled by a large number of genes, and linkage analysis of several traits implicates a ‘common gene, rare allele'' model of genetic variation where some genes have many individually rare alleles contributing. Most natural alleles exhibit small effect sizes with little-to-no detectable pleiotropy or epistasis. Additionally, many of these genes are locked away in low-recombination regions that encourage the formation of multi-gene blocks that may underlie maize''s strong heterotic effect. Domestication left strong marks on the maize genome, and some of the differences in trait architectures may be due to different selective pressures over time. Overall, maize''s advantages as a model system make it highly desirable for studying the genetics of outcrossing species, and results from it can provide insight into other such species, including humans.  相似文献   

14.
Recent work on behavioural variation within and between species has furthered our understanding of the genetic architecture of behavioural traits, the identities of relevant genes and the ways in which genetic variants affect neuronal circuits to modify behaviour. Here we review our understanding of the genetics of natural behavioural variation in non-human animals and highlight the implications of these findings for human genetics. We suggest that gene-environment interactions are central to natural genetic variation in behaviour and that genes affecting neuromodulatory pathways and sensory processing are preferred sites of naturally occurring mutations.  相似文献   

15.
我国是全球生物多样性大国,拥有包括大熊猫、金丝猴、华南虎、麋鹿、白鱀豚等特有物种和旗舰物种在内的丰富兽类资源。近几十年来,土地利用模式转变、盗猎、环境污染、气候变化等因素使许多兽类物种面临生存威胁,导致物种遗传多样性丧失。而遗传多样性是生物多样性的基本组成部分,决定了物种和种群能否长期生存。保护遗传学作为保护生物学的一大分支学科,旨在通过遗传学分析探明种群遗传变异和物种濒危的遗传学机制。近40年来,随着研究手段和技术的不断发展,我国兽类保护遗传学在遗传多样性和近交水平评估、景观遗传学、生态遗传学和圈养种群遗传管理等方面都取得了重要成果。然而,未来人类社会发展可能为濒危兽类带来的威胁依然存在,高通量测序等新技术的进一步发展则能够帮助我们更加深入地了解濒危物种和种群遗传适应与濒危机制,从而实现对濒危兽类的有效管理与保护。  相似文献   

16.
Recent research in community genetics has examined the effects of intraspecific genetic variation on species diversity in local communities. However, communities can be structured by a combination of both local and regional processes and to date, few community genetics studies have examined whether the effects of instraspecific genetic variation are consistent across levels of diversity. In this study, we ask whether host-plant genetic variation structures communities of arthropod inquilines within distinct habitat patches – rosette leaf galls on tall goldenrod ( Solidago altissima ). We found that genetic variation determined inquiline diversity at both local and regional spatial scales, but that trophic-level responses varied independently of one another. This result suggests that herbivores and predators likely respond to heritable plant traits at different spatial scales. Together, our results show that incorporating spatial scale is essential for predicting the effects of genetically variable traits on different trophic levels and levels of diversity within the communities that depend on host plants.  相似文献   

17.
Domestic pigeons are spectacularly diverse and exhibit variation in more traits than any other bird species [1]. In The Origin of Species, Charles Darwin repeatedly calls attention to the striking variation among domestic pigeon breeds-generated by thousands of years of artificial selection on a single species by human breeders-as a model for the process of natural divergence among wild populations and species [2]. Darwin proposed a morphology-based classification of domestic pigeon breeds [3], but the relationships among major groups of breeds and their geographic origins remain poorly understood [4, 5]. We used a large, geographically diverse sample of 361 individuals from 70 domestic pigeon breeds and two free-living populations to determine genetic relationships within this species. We found unexpected relationships among phenotypically divergent breeds as well as convergent evolution of derived traits among several breed groups. Our findings also illuminate the geographic origins of breed groups in India and the Middle East and suggest that racing breeds have made substantial contributions to feral pigeon populations.  相似文献   

18.
Relethford JH 《Heredity》2008,100(6):555-563
A continued debate in anthropology concerns the evolutionary origin of 'anatomically modern humans' (Homo sapiens sapiens). Different models have been proposed to examine the related questions of (1) where and when anatomically modern humans first appeared and (2) the genetic and evolutionary relationship between modern humans and earlier human populations. Genetic data have been increasingly used to address these questions. Genetic data on living human populations have been used to reconstruct the evolutionary history of the human species by considering how global patterns of human variation could be produced given different evolutionary scenarios. Of particular interest are gene trees that reconstruct the time and place of the most recent common ancestor of humanity for a given haplotype and the analysis of regional differences in genetic diversity. Ancient DNA has also allowed a direct assessment of genetic variation in European Neandertals. Together with the fossil record, genetic data provide insight into the origin of modern humans. The evidence points to an African origin of modern humans dating back to 200,000 years followed by later expansions of moderns out of Africa across the Old World. What is less clear is what happened when these early modern humans met preexisting 'archaic human' populations outside of Africa. At present, it is difficult to distinguish between a model of total genetic replacement and a model that includes some degree of genetic mixture.  相似文献   

19.
Distant hybridization refers to crosses between two different species or higher-ranking taxa that enables interspecific genome transfer and leads to changes in phenotypes and genotypes of the resulting progeny. If progeny derived from distant hybridization are bisexual and fertile, they can form a hybrid lineage through self-mating, with major implications for evolutionary biology, genetics, and breeding. Here, we review and summarize the published literature, and present our results on fish distant hybridization. Relevant problems involving distant hybridization between orders, families, subfamilies, genera, and species of animals are introduced and discussed, with an additional focus on fish distant hybrid lineages, genetic variation, patterns, and applications. Our review serves as a useful reference for evolutionary biology research and animal genetic breeding.  相似文献   

20.
Understanding the genetic architecture of phenotypic variation in natural populations is a fundamental goal of evolutionary genetics. Wild Soay sheep (Ovis aries) have an inherited polymorphism for horn morphology in both sexes, controlled by a single autosomal locus, Horns. The majority of males have large normal horns, but a small number have vestigial, deformed horns, known as scurs; females have either normal horns, scurs or no horns (polled). Given that scurred males and polled females have reduced fitness within each sex, it is counterintuitive that the polymorphism persists within the population. Therefore, identifying the genetic basis of horn type will provide a vital foundation for understanding why the different morphs are maintained in the face of natural selection. We conducted a genome-wide association study using ~36000 single nucleotide polymorphisms (SNPs) and determined the main candidate for Horns as RXFP2, an autosomal gene with a known involvement in determining primary sex characters in humans and mice. Evidence from additional SNPs in and around RXFP2 supports a new model of horn-type inheritance in Soay sheep, and for the first time, sheep with the same horn phenotype but different underlying genotypes can be identified. In addition, RXFP2 was shown to be an additive quantitative trait locus (QTL) for horn size in normal-horned males, accounting for up to 76% of additive genetic variation in this trait. This finding contrasts markedly from genome-wide association studies of quantitative traits in humans and some model species, where it is often observed that mapped loci only explain a modest proportion of the overall genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号