首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conidiogenesis in Torula herbarum and T. herbarum f. quaternella was observed by scanning and transmission electron microscopy. Conidia of the former were shown to be made up of three equally sized cells capped by a distinctive, and easily recognizable, conidiogenous cell. Conidiogenous cells also arose terminally on erect hyphae and on prostrate hyphae. The single-layered conidial cell walls were differentiated into an inner hyaline zone and an outer electron-dense zone formed by the deposition of melanin. Conidiogenous cells lacked melanin at the apex and, before conidiation, the lateral walls were strengthened by a further deposition of melanin. The apex bulged outwards and was modified into a new multicelled conidium bearing another apical conidiogenous cell. Continued development of new conidia resulted in an acropetal chain which became disarticulated after cytolysis within the conidiogenous cell. The relative distinctions between holoblastic and enteroblastic development are discussed and it is concluded that the conidia should be referred to as blastoconidia.  相似文献   

2.
The cell wall of Aspergillus fumigatus is predominantly composed of polysaccharides. The central fibrillar core of the cell wall is composed of a branched β(1‐3)glucan, to which the chitin and the galactomannan are covalently bound. Softening of the cell wall is an essential event during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosyl hydrolases. In this study, we characterised the role of the glycosyl hydrolase GH55 members in A. fumigatus fungal morphogenesis. We showed that deletion of the six genes of the GH55 family stopped conidial cell wall maturation at the beginning of the development process, leading to abrogation of conidial separation: the shape of conidia became ovoid, and germination was delayed. In conclusion, the reorganisation and structuring of the conidial cell wall mediated by members of the GH55 family is essential for their maturation, normal dissemination, and germination.  相似文献   

3.
胡东维  张敬泽 《菌物学报》2004,23(1):122-125
通过电子显微镜和细胞化学标记研究了哈氏木霉分生孢子发育的超微结构和细胞化学。分生孢子发育的超微结构研究表明,分生孢子壁的发育是有个由薄而光滑到厚而有疣的过程;期间脂肪体在分生孢子和产孢细胞中不断累积,最后脂肪体沿着内壁排列成一层。免疫金标记结果显示,幼嫩的分生孢子壁中缺乏几丁质和纤维素,只有在成熟的分生孢子壁中含有几丁质;出乎意料的是在成熟分生孢子中发现有少量纤维素的存在。  相似文献   

4.
The cell walls of Fusarium sulphureum have a microfibrillar component that is randomly arranged. X-ray-diffraction diagrams of the microfibrils are consistent with a high degree of crystallinity and show that they are chitin. The chitin microfibrils of the peripheral walls envelop the hyphal apex and extend across the septae. During the first 8h in culture, the conversion of conidial cells to chlamydospores is evidenced by a swelling of the cells and the original microfibrils remain randomly arranged. Within 24h new wall material is deposited as the cells expand and the wall thickens. The new microfibrils are indistinguishable from those of the original conidial cells. After 3 days in culture, the chlamydospores are fully developed and have the characteristic thick wall which is a continuous layer of randomly arranged microfibrils. Chlamydospores maintained in a conversion medium for 8 days have microfibrils identical with those in 3-day-old cultures; thus a further change in the microfibril orientation did not occur during that period. Alkaline hydrolysis of the walls removes most of the electron-dense staining constituents from the inner wall layer and leaves the outer wall layer intact. This treatment also reveals some of the wall microfibrils. An additional treatment of the walls with HAc/H2O2 completely removes the wall components that react positively to heavy metal stains. The results are discussed in relation to the structure of other fungal cell walls.  相似文献   

5.
Although the process of conidial germination in filamentous fungi has been extensively studied, many aspects remain to be elucidated since the asexual spore or conidium is vital in their life cycle. Breakage and reformation of cell wall polymer bonds along with the maintenance of cell wall plasticity during conidia germination depend upon a range of hydrolytic enzymes whose activity is analogous to that of expansins, a highly conserved group of plant cell wall proteins with characteristic wall loosening activity. In the current study, we identified and characterized the eglD gene in Aspergillus nidulans, an expansin-like gene the product of which shows strong similarities with bacterial and fungal endo-beta1,4-glucanases. However, we failed to show such activity in vitro. The eglD gene is constitutively expressed in all developmental stages and compartments of A. nidulans asexual life cycle. However, the EglD protein is exclusively present in conidial cell walls. The role of the EglD protein in morphogenesis, growth and germination rate of conidia was investigated. Our results show that EglD is a conidial cell wall localized expansin-like protein, which could be involved in cell wall remodeling during germination.  相似文献   

6.
Conidial formation and secession by living conidiophores of Blumeria graminis f. sp. hordei on barley leaves were consecutively monitored using a high-fidelity digital microscopic technique combined with electrostatic micromanipulation to trap the released conidia. Conidial chains formed on conidiophores through a series of septum-mediated division and growth of generative cells. Apical conidial cells on the conidiophores were abstricted after the conidial chains developed ten conidial cells. The conidia were electrically conductive, and a positive charge was induced in the cells by a negatively polarized insulator probe (ebonite). The electrostatic force between the conidia and the insulator was used to attract the abstricted conidia from the conidiophores on leaves. This conidium movement from the targeted conidiophore to the rod was directly viewed under the digital microscope, and the length of the interval between conidial septation and secession, the total number of the conidia produced by a single conidiophore, and the modes of conidiogenesis were clarified. During the stage of conidial secession, the generative cells pushed new conidial cells upwards by repeated division and growth. The successive release of two apical conidia was synchronized with the successive septation and growth of a generative cell. The release ceased after 4-5 conidia were released without division and growth of the generative cell. Thus, the life of an individual conidiophore (from the erection of the conidiophore to the release of the final conidium) was shown to be 107 h and to produce an average of 33 conidia. To our knowledge, this is the first report on the direct estimation of life-long conidial production by a powdery mildew on host leaves.  相似文献   

7.
Electron microscope observations were made of the Australian and U.S. strains of Culicinomyces clavisporus infecting mosquito larvae. The wall of the conidium is composed of an inner (primary) layer, an outer (secondary) layer, and an exterior coating of a mucopolysaccharide substance believed responsible for conidial adhesion to the host cuticle prior to germination and penetration. In some instances the wall of the conidium is ruptured during germination and new wall layers and mucoid coating form around the germ tube whereas in other specimens the conidial wall layers extend around the germ tube without fracturing. The most common invasion site is through the larval foregut following ingestion of conidia. The apex of the germ tube presses tightly against the surface of the foregut cuticle and the mucilaginous coating is stripped away. There is evidence to suggest that the host epicuticle, which disappears across the zone of contact with the germ tube, is utilized for nutrition of the invading fungus. A collar of cuticle forms around the germ tube apex and a narrow penetrant hyphae extends into the procuticle. It is believed that cuticular penetration is primarily enzymatic assisted by mechanical pressure. The penetrant hypha swells into an oval cell in the hypodermal region and vegetative hypha then invade the hemocoel. The cells of the hypodermis develop signs of degeneration presumably due to the secretion of toxic substances from the invading hyphae. Host reactions, involving melanization of the host tissues, are sometimes evident among the invading penetrant hyphae in the cuticle or in the hypodermal cells in contact with the fungus. Melanized capsules form around some of the hyphae within the hemocoel. These latter reactions do not directly involve host blood cells and are examples of “humoral encapsulation” similar to that described by other authors during invasion of pathogenic organisms into mosquito larvae and chironomid larvae.  相似文献   

8.
A cultivation system has been developed for Penicillium urticae which yields 'microcycle' conidiation in submerged culture. Spherical growth of spores was initiated by incubation at 37 degrees C in a growth-favoring medium. Transfer of these enlarged spores to a nitrogen-poor medium at 35 degrees C results in synchronous germination and limited outgrowth followed by roughly synchronous conidiation. A study of the conidiation stage showed that a phialide and an immature conidium began to form at the tip of all germ tubes 18 h after the temperature shift. By 24 h additional phialides commonly appeared as a branch near the tip of the germ tube and the more mature conidia exhibited increasing refractility. The earliest ultrastructural signs of conidiation were various round invaginations in the plasma membrane and a thickening and rounding of the new spore wall which appeared as an inner extension of the phialide cell wall. Upon segregation of the conidium from the phialide cell by conidial wall formation, 'trench-like' invaginations gradually appeared in the plasma membrane and a disorganized rodlet pattern was formed on the outer surface of the maturing conidial wall. Continued maturation involved the formation of chains of conidia and phialide senescence which was characterized by a general degradation of intracellular structure. A comparison with standard surface and submerged culture conidiation indicated that 'microcycle' conidiation, while less prolific, was essentially identical.  相似文献   

9.
Jeong HY  Chae KS  Whang SS 《Mycologia》2004,96(1):52-56
The presence of a mannoprotein, MnpAp, in the hyphal cell wall of Aspergillus nidulans was examined by immunogold electron microscopy using a mnpA-null mutant as a negative control. The hyphal cell wall of wild type consisted of two layers-an electron-dense smooth outer layer and an electron-translucent inner layer-while the hyphal cell wall of the mnpA-null mutant had an electron-dense irregular outer layer together with the electron-translucent inner layer. In wild type, MnpAp was present throughout the electron-translucent layer of the hyphal cell wall but was absent from the conidial cell wall. In the mnpA-null mutant, MnpAp was absent from the cell walls of both cell types. These results indicate that MnpAp is present in the hyphal cell wall and that it influences cell wall surface structure.  相似文献   

10.
The development sequence of anatomical changes taking placewithin the pericarp tissues of Brassica napus siliquae havebeen studied at a fine- and ultra-structural level. Tissue differentiationoccurred during the initial 20 d after anthesis (DAA) and allowedthe identification of dehiscence zone cells. This descrete tissuewas subsequently further delineated by extensive lignificationof adjacent valve edge and replar vascular cells. Concomitantwith the onset of pericarp lignification, cytoplasmic contentsof the thin-walled dehiscence zone cells exhibited progressivesenescence and degradation. Wall breakdown, initially evidentin pods by 60 DAA, exclusively affected cells within the dehiscencezone, and eventually extended throughout this tissue from theepidermal suture to the locule, thus precipitating valve detachment.Ultrastructural examination confirmed that this loss of cellularcohesion was primarily attributable to middle lamella degradationand, furthermore, the dissolution of wall material was apparentlydependent on rupture of the dehiscence zone protoplast. Thesignificance of dehiscence zone cell modifications in relationto autolytic cell wall breakdown, together with possible implicationsfor the regulation of pod shatter, are discussed. Key words: Oilseed rape, Brassica napus, pod shatter, dehiscence zone, cell wall breakdown  相似文献   

11.
Each phialide had a thick-walled neck region located immediately below a light microscopically inconspicuous collarette. The thickened wall of the phialide neck was multilaminate, with layers of different electron transmission properties. A developmental stage in the formation of the first conidial initial was observed. Conidial initials blew out through the thickened neck region, increased in size, and were eventually delimited by centripetally developing septa. Mature, winged conidia had an electron-opaque outer wall layer and an electron-transparent inner wall layer. The wing was formed by separation of these outer and inner wall layers and buckling or wrinkling of the outer layer. As early as they could be discerned, conidial initials had developed the electron-opaque wall layer which characterized mature conidia. Each conidium-delimiting septum became bilayered; the upper layer formed part of the conidial base, and the lower layer became a portion of the wall of the next conidial initial. Phialides lacked an electron-opaque wall layer, and they possessed areas of abundant rough endoplasmic reticulum, as well as free ribosomes. Lipid globules were also abundant, especially in conidia. The distinction between phialides and annellides was questioned.  相似文献   

12.
The intracellular localization of Neurospora invertase, an enzyme partially secreted and partially retained by Neurospora at the cell periphery, was investigated. A cell wall fraction was isolated, to which 24% of the cell-bound invertase was firmly attached. A sensitive osmiophilic stain for invertase was developed and used in conjunction with the technique of indirect immunofluorescence to follow the pattern of invertase localization during the development of Neurospora from the germination of conidia to the mature hypha. These studies revealed that: (i) conidial invertase was uniformly distributed along the cell periphery; (ii) growing hyphal tips of germinating conidia showed pronounced invertase activity as the rest of the conidial cell wall lost its peripheral activity; (iii) hyphae in early log-phase growth had strong enzyme activity associated with the cell wall, and in late log phase the activity became associated with the plasma membrane and points where new hyphal branches were being formed; and (iv) hyphae in early stationary phase had strong fluorescence at incipient branching points, in "dots" close to the plasma membrane, and in the cytoplasm.  相似文献   

13.
The galactomannan is a major cell wall molecule of Aspergillus fumigatus. This molecule is composed of a linear mannan with a repeating unit composed of four α1,6 and α1,2 linked mannose with side chains of galactofuran. To obtain a better understanding of the mannan biosynthesis in A. fumigatus, it was decided to undertake the successive deletion of the 11 genes which are putative orthologs of the mannosyltransferases responsible for establishing α1,6 and α1,2 mannose linkages in yeast. These deletions did not lead to a reduction of the mannan content of the cell wall of the mycelium of A. fumigatus. In contrast, the mannan content of the conidial cell wall was reduced and this reduction was associated with a partial disorganization of the cell wall leading to defects in conidial survival both in vitro and in vivo.  相似文献   

14.
G. G. Conti    M. Bassi    D. Maffi    G. Violini    L. Magnani  L. Gatti 《Journal of Phytopathology》1994,140(2):123-132
Plants of Cucumis sativus were eithe preinoculated with TNV or treated with drops of a 5% solution of CuSO4 on the cotyledons, and 5 days later challenge-inoculated with Sphaerotheca fuliginea on the first true leaf. The induced systemic resistance was assessed by evaluating the percentage of conidial germination, the length of the hyphae derived from single conidia, the number of cells with lignified walls and that of cells containing haustoria. The number of necrotic cells was also recorded. Compared with controls, in TNV-preinoculated plants conidial germination was lower, hyphal length shorter and the number of haustoria much reduced. The majority of haustoria was found in cells with lignified walls. Pretreatment with CuSO4, although inducing a slight increase of cell wall lignification, did not appreciably reduce the infection process. The number of necrotic cells was very low in all cases. These results suggest that, in this host/pathogen interaction, hypersensitive cell death has no part in the induced defence reaction, although a major role is played by the lignification process.  相似文献   

15.
Cellulase reaction product was localized cytochemically at the ultrastructural level in the cell wall of disc cells, the secretory cavity and in the subcuticular wall of glands inCannabis. Cellulase reaction product was evident in the less dense region of the disc cell wall prior to secretory cavity formation. Reactivity in this region was associated with separation of an outer zone, forming the subcuticular wall, from the inner wall zone adjacent to the plasma membrane of the disc cells. Reaction product was associated with the disc cell wall and fibrillar matrix extending from it into the secretory cavity. Reactivity remained evident over the subcuticular wall throughout enlargement of the secretory cavity. Reaction product also was present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall. The distribution of cellulase reaction product supports an interpretation that cellulase is involved in formation of the secretory cavity and subsequent redistribution of wall products to form the subcuticular wall during development of the secretory cavity.  相似文献   

16.
The current perception of the ultrastructure of gram-positive cell envelopes relies mainly on electron microscopy of thin sections and on sample preparation. Freezing of cells into a matrix of amorphous ice (i.e., vitrification) results in optimal specimen preservation and allows the observation of cell envelope boundary layers in their (frozen) hydrated state. In this report, cryo-transmission electron microscopy of frozen-hydrated sections of Staphylococcus aureus D2C was used to examine cell envelope organization. A bipartite wall was positioned above the plasma membrane and consisted of a 16-nm low-density inner wall zone (IWZ), followed by a 19-nm high-density outer wall zone (OWZ). Observation of plasmolyzed cells, which were used to artificially separate the membrane from the wall, showed membrane vesicles within the space associated with the IWZ in native cells and a large gap between the membrane and OWZ, suggesting that the IWZ was devoid of a cross-linked polymeric cell wall network. Isolated wall fragments possessed only one zone of high density, with a constant level of density throughout their thickness, as was previously seen with the OWZs of intact cells. These results strongly indicate that the IWZ represents a periplasmic space, composed mostly of soluble low-density constituents confined between the plasma membrane and OWZ, and that the OWZ represents the peptidoglycan-teichoic acid cell wall network with its associated proteins. Cell wall differentiation was also seen at the septum of dividing cells. Here, two high-density zones were sandwiched between three low-density zones. It appeared that the septum consisted of an extension of the IWZ and OWZ from the outside peripheral wall, plus a low-density middle zone that separated adjacent septal cross walls, which could contribute to cell separation during division.  相似文献   

17.
Transmission electron microscopy revealed that the conidial wall of Cladosporium cladosporioides was constituted of an electron-lucent inner layer and an electron-dense outer layer. The conidial surface is covered by rodlet fascicles which can be removed by ultrasonication. Ultrastructurally, the 100,000 X g ultracentrifugation pellet of the ultrasonicated extract containing the rodlet layer appeared as an amorphous structure containing probably internal wall material anchoring the rodlet fascicles on the wall. The total conidial wall was essentially composed of beta(1----3)glucans and melanin. Lipid, salt, and galactan represented the main components of the 100,000 X g ultracentrifugation pellet of the ultrasonicated extract. Cladosporium cladosporioides produced melanin via the pentaketide pathway. Tricyclazole inhibited melanin synthesis but did not interfere with allergen production. This suggests that the wall components associated with melanin are not allergenic factors.  相似文献   

18.
In young pollen grains of Datura innoxia, a wall of the usual hemispherical type separates the 2 gametophytic cells initially and, in the electron microscope, appears as an electron-translucent matrix which is contiguous with the intine. Before detachment of the generative cell from the intine, the matrix decreases in thickness and in places is dispersed altogether leaving the plasmalemmae on either side of it in close apposition. A particularly prominent zone, triangular in profile, is left where the wall joins with the intine. After detachment of the cell, remnants of the matrix can be seen distributed irregularly around the cell and it is supposed that these are partly derived from material in the triangular zone as the cell is drawn away from the intine. The wall residues persist throughout the maturation phase of the pollen and are considered to be either callose resulting from incomplete digestion of the initial wall, or some other polysaccharide material which is unevenly laid down along the wall and concentrated at the junction with the intine. In pollen induced into embryogenesis by anther culture, wall material is also distributed irregularly around the detached cell in a series of discrete zones, but these are more extensive than in vivo, closer together and in many instances highly dilated. The wall profiles thus have a beaded appearance, the 'beads' being connected together by short links of the 2 apposed plasmalemmae. The contents of the swollen zones have a similar electron density to that of the matrix in vivo but also show traces of a fibrillar component. It is postulated that this unusual swelling is a prelude to dispersal of the wall by disruption of the plasmalemmal links and to the establishment of cytoplasmic continuity between the 2 cells. The significance of such binucleate pollen grains in the formation of non-haploid embryos is discussed.  相似文献   

19.
Han X  Yu R  Zhen D  Tao S  Schmidt M  Han L 《PloS one》2011,6(7):e21468
The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinated, A. fumigatus conidia were able to stimulate host PLD activity and internalize more efficiently in A549 cells without altering PLD expression. The internalization of A. fumigatus in A549 cells was suppressed by the downregulation of host cell PLD using chemical inhibitors or siRNA interference. The heat-killed swollen conidia, but not the resting conidia, were able to activate host PLD. Further, β-1,3-glucan, the core component of the conidial cell wall, stimulated host PLD activity. This PLD activation and conidia internalization were inhibited by anti-dectin-1 antibody. Indeed, dectin-1, a β-1,3-glucan receptor, was expressed in A549 cells, and its expression profile was not altered by conidial stimulation. Finally, host cell PLD1 and PLD2 accompanied A. fumigatus conidia during internalization. Our data indicate that host cell PLD activity induced by β-1,3-glucan on the surface of germinated conidia is important for the efficient internalization of A. fumigatus into A549 lung epithelial cells.  相似文献   

20.
A cultivation system has been developed for Penicillium urticae (NRRL 2159A) which yields 'microcycle' conidiation in submerged culture. Spherical growth of conidia was initiated by incubation at 37 degrees C in a growth-favoring medium. Transfer of these enlarged conidia to a nitrogen-poor medium at 35 degrees C resulted in synchronous germination and limited outgrowth followed by roughly synchronous conidiogenesis. An ultrastructural study of the germination stage indicated nuclear migration into the emerging germ tube whose new cell wall was an extension of the parent conidium's innermost cell wall layer. Septal formation at the neck of the germ tube followed. The septal pore was filled with particulate material and the septal membranes possessed unusual linear elements in their median hydrophobic zones. The germ tube, which possessed a smooth-surfaced plasma membrane, continued to elongate with periodic septum formation. The parent conidium and later the proximal germ tube showed progressive vacuolation and the cytoplasm became largely occupied by electron-translucent material. In older cells the septal pore was blocked by Woronin bodies. Compared with normal conidial germination this microcycle' germination is far more synchronous and the resultant germling is morphologically simpler. In ultrastructural terms, however, germination appears to be identical with that obtained at 28 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号