首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

2.
 Lysozyme (muramidase) is capable of direct bacteriolytic action by hydrolyzing glycosidic bonds in bacterial cell walls. Although it is broadly distributed in vertebrate tissues and secretions, the cellular and subcellular localizations of the enzyme are still not well known. The present study examines the distribution of lysozyme expression in the various cell types of LR gold-embedded rat parotid gland, applying a postembedding immunogold-silver staining technique for light microscopy. Simultaneously, a postembedding immunogold method for electron microscopy was used to determine the cellular compartments engaged in the biosynthesis and exocytosis of lysozyme. Silver-amplified immunogold staining for lysozyme demonstrated identical localization in both paraffin and semithin LR-gold sections: in the supranuclear parts of acinar and intercalated duct cells. Staining intensity varied even between adjacent cells. In the electron microscope, immunogold labeling was detected over the cell compartments associated with protein synthesis and exocytosis in acinar and intercalated duct cells. Lysozyme antigenic sites were visible over endoplasmic reticulum and throughout the Golgi apparatus, being intense over the trans-Golgi network, but even stronger in the condensing vacuoles and most prominent over secretory granules in both cell types. The findings provide the first immunocytochemical evidence of the synthesis and secretion of lysozyme in parotid acinar and intercalated duct cells. Accepted: 3 December 1996  相似文献   

3.
Summary Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal -N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate -galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20–50% of these cells in all glands contained terminalN-acetylglucosamine residues. In contrast, terminal -N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.  相似文献   

4.
In squirrel monkey (Saimiri sciureus) the position of submandibular glands in the neck, on either side of the trachea, more closely resembles that of rodents than that of other primates. The glands exhibit seromucous acini and mucous tubules with seromucous demilunes. Electron microscopy shows basal cytoplasmic folds and well-developed intercellular tissue spaces and canaliculi only in relation to seromucous cells. Greatly dilated cisternae of the granular endoplasmic reticulum and prominent Golgi membranes are characteristic of the mucous cells. The secretory granules of seromucous and mucous cells are morphologically distinct and indicate chemically different products for the two cell types. Histochemically, the seromucous cell shows the presence of acid mucosubstance as indicated by the PAS and Alcian blue techniques. Preliminary studies showed no appreciable quantity of amylase in submandibular glands. The intercalated duct cell is juxtaposed with the acinar cell or mucous tubule cell. Short luminal microvilli, prominent Golgi complexes and scant apical granules are notable features of intercalated duct cells. Four cell types compose the striated ducts, viz., granular light cells, agranular dark cells, vesiculated dark cells, and basal cells. Peripheral nerves are found in five different locations: in the connective tissue (interstitial), between adjacent myoepithelial and mucous-secreting cells, in the intercellular space between adjacent secretory cells, and between basal plications of striated ducts and between adjacent myoepithelial and intercalated duct cells.  相似文献   

5.
Summary The localization of complex carbohydrates in the Golgi apparatus, secretory granules and plasmalemma of mouse parotid acinar cells was studied using the fracture-labelling method. The hexose residues of glycoconjugates were identified using ferritin conjugated with Wheat Germ Agglutinin (WGA-), Ricinnus Communis Agglutinin II (RCA-II-), Phaseolus Vulgaris Agglutinin (PHA-) and Limulus Polyphemus Agglutinin (LPA-). We found that the tracture-labelling method allows not only the labelling of membrane faces but also analysis of the compartment's content that is exposed during the fracturing of the tissue. Our results revealed differences in the hexose residues located in the Golgi apparatus, secretory granules and the apical and lateral plasmalemma. Numerous binding sites for WGA-, PHA-and RCA-II-ferritin were demonstrable in the Golgi apparatus. In secretory granules, the WGA-and RCA-II-ferritin binding sites were most numerous, while LPA-ferritin binding sites were very rate. The density of the binding sites for PHA-ferritin showed considerable variation in secretory granules. The apical plasmalemma exhibited a high density of binding sites for all of the lectins used. In the lateral plasmalemma, LPA-ferritin was not bound, and there were fewer binding sites for WGA-, RCA-H-and PHA-ferritin.  相似文献   

6.
Summary The ability of duct cells of the rat parotid gland to internalize bovine serum albumin (BSA) and several glycosylated albumins (glucosamide, galactosamide, fucosamide, lactosyl, p-aminophenyl-N-acetyl-D-glucosamide, p-aminophenyl-N-acetyl-D-mannopyranoside, p-aminophenyl-N-acetyl-D-galactosamide) was investigated. The various BSA preparations were infused into the gland via the main excretory duct, after which the tissues were fixed and prepared for light and electron microscopy. Immunolocalization of native BSA, as well as the glycosylated BSAs, was performed on thin sections, using an unlabeled antibody to BSA followed by protein A-colloidal gold. Gold particles were present over the lumina of both intercalated ducts and striated ducts, and over small endocytic structures and large vacuoles in the apical cytoplasm of both duct cell types. Endocytosis of the glycosylated BSAs by duct cells was greater than native BSA. Fucosylamide-BSA and mannopyranoside-BSA were taken up to a greater extent than the other glycosylated BSAs. Uptake by intercalated duct cells was greater than by striated duct cells, was independent of the concentration of the glycosylated BSA, and was reduced by an excess of the corresponding sugar. Striated duct cells showed some damage by the glycosylated BSAs that was concentration-dependent, and which was reduced in the presence of an excess of the corresponding sugar. These results suggest that endocytosis by salivary gland duct cells may involve specific recognition of carbohydrate residues and that the endocytosis of acinar secretory proteins observed in certain conditions may be due to increased and/or altered protein glycosylation.  相似文献   

7.
The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), Glycine max agglutinin (SBA), Arachys hypogaea agglutinin (PNA)]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN) derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory granules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.  相似文献   

8.
Transferrin is the major iron transporter in blood plasma, and is also found, at lower concentrations, in saliva. We studied the synthesis and secretion of transferrin in rat parotid acinar cells in order to elucidate its secretory pathways. Two sources were identified for transferrin in parotid acinar cells: synthesis by the cells (endogenous), and absorption from blood plasma (exogenous). Transferrin from both sources is secreted from the apical side of parotid acinar cells. Endogenous transferrin is transported to secretory granules. It is secreted from mature secretory granules upon stimulation with a β-adrenergic reagent and from smaller vesicles in the absence of stimulation. Exogenous transferrin is internalized from the basolateral side of parotid acinar cells, transported to the apical side by transcytosis, and secreted from the apical side. Secretory processes for exogenous transferrin include transport systems involving microfilaments and microtubules.  相似文献   

9.
The structure and glycoconjugate content of the cat parotid gland were analyzed at electron microscopic level by applying morphological techniques and three ultrastructural histochemical methods - HID-TCH-SP, LID-TCH-SP and PA-TCH-SP. This gland appeared as a typical salivary gland composed of acinar secretory cells, intercalated ducts, striated ducts and excretory ducts. The most common configuration of secretory granules consisted of a dense core surrounded by a variable electron-lucent halo. All ductal segments were characterized by the presence of different cell populations and small apical granules greatly different from those localized in the acinar cells. By using HID-TCH-SP we were able to demonstrate that in a few acinar cells there are sulphated sites, whereas PA-TCH-SP staining revealed the presence of vic-glycol radicals in all acinar cells preferentially located on the halo of secretory granules.  相似文献   

10.
THE FINE STRUCTURE OF VON EBNER''S GLAND OF THE RAT   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of von Ebner's gland was studied in untreated rats and rats stimulated to secrete by fasting-refeeding or injection of pilocarpine. Cytological features were similar to those reported for pancreas and parotid gland. Abundant granular endoplasmic reticulum filled the basal portion of the cell, a well-developed Golgi complex was located in the vicinity of the nucleus, and the apical portion of the cell was filled with dense secretory granules. Dense heterogeneous bodies resembling lysosomes were closely associated with the Golgi complex. Coated vesicles were seen in the Golgi region and also in continuity with the cell membrane. Granule discharge occurred by fusion of the granule membrane with the cell membrane at the secretory surface. Successive fusion of adjacent granules to the previously fused granule formed a connected string of granules in the apical cytoplasm. Myoepithelial cells were present within the basement membrane, and nerve processes were seen adjacent to acinar and myoepithelial cells. Duct cells resembled the intercalated duct cells of the major salivary glands.  相似文献   

11.
Cysteine string proteins (CSPs) are secretory vesicle chaperone proteins that contain: (i) a heavily palmitoylated cysteine string (comprised of 14 cysteine residues, responsible for the localization of CSP to secretory vesicle membranes), (ii) an N-terminal J-domain (DnaJ domain of Hsc70, 70 kDa heat-shock cognate protein family of co-chaperones), and (iii) a linker domain (important in mediating CSP effects on secretion). In this study, we investigated the localization of CSP1 in rat parotid acinar cells and evaluated the role of CSP1 in parotid secretion. RT-PCR and western blotting revealed that CSP1 was expressed and associated with Hsc70 in rat parotid acinar cells. Further, CSP1 associated with syntaxin 4, but not with syntaxin 3, on the apical plasma membrane. Introduction of anti-CSP1 antibody into SLO-permeabilized acinar cells enhanced isoproterenol (IPR)-induced amylase release. Introduction of GST-CSP11–112, containing both the J-domain and the adjacent linker region, enhanced IPR-induced amylase release, whereas neither GST-CSP11–82, containing the J-domain only, nor GST-CSP183–112, containing the linker region only, did produce detectable enhancement. These results indicated that both the J-domain and the linker domain of CSP1 are necessary to function an important role in acinar cell exocytosis.  相似文献   

12.
The duct system of the lactating mammary gland of the African elephant (Loxodonta africana) was investigated with histochemical and immunohistochemical techniques and with the transmission electron microscope in order to detect specific cell biological differentiations in the ductal epithelia of this species, which is marked by an unusually long lactation period. General histology and electron microscopy allow to distinguish several segments in the entire duct system. The apical membranes of the epithelia have binding sites for several lectins [Canavalia ensiformis agglutinin (ConA), Ricinus communis agglutinin (RCA I), Wisteria floribunda agglutinin (WFA), peanut agglutinin (PNA)] and also stain with alcian blue indicating the presence of a highly differentiated negatively charged glycocalyx forming an effective barrier between lumen and epithelium. Cytokeratins, actin, tubulin and vinculin show different expression intensities in the proximal and distal portion of the duct system. Lysozyme, lactoferrin, the secretory component of IgA and human beta defensin-2 are expressed in the epithelium of the entire duct system. In the distal portion of the ducts the staining intensity is stronger than in the proximal portion. We conclude that the duct system of the elephant mammary gland has specific secretory functions and that the secretory products are part of the defensive mechanisms against invading microorganisms.  相似文献   

13.
Summary To identify precisely the structural and functional cell type in the collecting duct of the rat kidney expressing binding sites for Dolichos biflorus agglutinin (DBA), we stained serial paraffin sections of kidney with horseradish peroxidase-labeled DBA and with immunocytochemical methods for localizing (Na++K+)-ATPase and carbonic anhydrase II (CA II), enzymes found preferentially in principal and intercalated cells, respectively. Most principal cells expressing a strong basolateral staining for (Na+ + K+)-ATPase showed binding sites for DBA at their luminal surfaces. However, a minority of cells rich in CA II and showing morphologic characteristics of intercalated cells also expressed DBA binding sites at their luminal surface and apical cytoplasm. These data suggest that DBA cytochemistrycan provide a useful tool for studying the functional polarity of the main cell types of the collecting duct of the rat kidney.  相似文献   

14.
Expression of fucose residues in entero-endocrine cells   总被引:1,自引:0,他引:1  
 The binding of the fucose-specific lectin, Ulex europaeus agglutinin (UEA-I), to entero-endocrine cells was studied in the ileum and caecum of humans, rabbits, rats, and mice. In all species investigated, numerous cells scattered in the crypt and villus epithelia intensely bound the UEA-I lectin. These cells proved to be argyrophilic and were identified as enterochromaffin cells and peptide tyrosine tyrosine cells by immunohistochemistry. They mostly reached the gut lumen (”open type”) by slender cellular processes. At the ultrastructural level, fucose binding sites were located in the matrix of the electron-dense secretory granules of these cells and in the glycocalyx covering their apical membrane. The results show that in various mammalian species entero-endocrine cells of defined types express fucose-bearing glycoconjugates. The presence of fucose residues in the apical membrane of entero-endocrine cells indicates that this membrane domain has a specialized composition of intramembranous glycoconjugates which could be involved in receptive and/or secretory functions. Accepted: 12 June 1997  相似文献   

15.
Bovine parotid glands exhibit outstanding structural differences when compared with those of non-ruminant mammals. The acini are tortuous, branched and lined with cells of different heights, imparting a scalloped appearance to acinar lumina. Numerous microvilli, ca. 1.5 μ in length, extend into the lumina and intercellular canaliculi. Intercellular canaliculi measure ca. 3 μ in diameter and interweave in close association with intercellular tissue spaces. Intercellular tissue spaces are separated from the extraacinar spaces across a basal lamina only, whereas junctional complexes guard canaliculi from direct continuity with tissue spaces and/or extraacinar spaces. Flattened cytoplasmic lamellae extend from adjacent acinar cells and loosely interdigitate with one another across the tissue spaces. Acinar cells contain more mitochondria and less granular endoplasmic reticulum than parotid glands of non-ruminant mammals. Two types of secretory material, in the form of inclusions which vary in size and electron density, are present in the acinar cells. Intercalated ducts connect acini with striated ducts which in turn, empty into collecting ducts located between gland lobules. In terms of frequency of “basal infoldings” and numbers of mitochondria, striated ducts of calf parotid glands are not as well developed as those of certain other salivary glands. Myoepithelial cells are most often present at junctions of acini and intercalated ducts where they may attach to both acinar and ductal epithelium. Nerve “terminals” were not observed on the epithelial side of basement membranes in relation to the secretory cells.  相似文献   

16.
This is the first ultrastructural investigation of salivary glands in the family Cheyletidae. In both sexes of Bakericheyla chanayi, paired acinous salivary glands and tubular coxal glands were shown to be united into the common podocephalic system. The secretory portion of the salivary gland includes medial and lateral lobes composed of the five and two cells, respectively, with clearly distinct ultrastructure. The cytoplasm of the cells is occupied by the secretory granules containing fine fibrous material. The fine structure of both cell types suggest a proteinaceous nature of their secretions. A single central process extending from the apical face of each secretory cell passes through the common acinar cavity to enter the conducting duct. A pair of intercalary cells at the base of the conducting duct links it with the secretory portion of the gland. Extending towards the acinar cavity, protrusions of intercalary cells alternate the apical regions of the secretory cells and form with them highly‐specialized contacts characterized by the apical network of microtubules and microfilaments. Two possible ways of secretion are suggested: 1) exocytosis into the acinar cavity and 2) direct passage via the central processes. The detection of axon profiles in the gland body suggests a neural control for the glandular cell function. In tritonymphs, neither secretion nor large lateral lobe cells were observed up to the pharate stage when the lateral lobe undergoes rapid differentiation. The arrangement of the acinous gland is compared to that of other arthropods. Its composition appears to be close to the class three of insect glands. The involvement of the lateral lobe cells in silk production is discussed. J. Morphol. 276:772–786, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Summary The ultrastructural localization of dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5) in rat submandibular and parotid glands was studied immunocytochemically by the peroxidase-antiperoxidase (PAP) method, using a monospecific antiserum against rat kidney DPP IV. There were no differences in the immunocytochemical localization of DPP IV between submandibular and parotid glands. In these glands, DPP IV was primarily found to be associated with the luminal and intercellular canalicular plasma membranes of acinar cells and with the luminal plasma membranes of intercalated and striated duct cells. Occasionally, immunoreaction of DPP IV was detected in cytoplasmic vesicles (vacuoles), lysosomes, and multivesicular bodies in some acinar cells as well as in ductal epithelial cells. Furthermore, the reaction product was also found within the lumina of peri-acinar and peri-ductal capillaries and in the cytoplasm of some fibroblasts in the interstitial connective tissue. These data suggest that DPP IV in the submandibular and parotid glands may play some role in the secretion or reabsorption processes of secretory proteins and peptides in these glands.  相似文献   

18.
K Jezernik  N Pipan 《Histochemistry》1989,92(6):531-534
Osmium impregnation was used to show possible differences of reduction capacity of perinuclear space, rough endoplasmic reticulum and the Golgi apparatus of unstimulated mouse parotid gland and in the gland after repeated pharmacological doses of isoproterenol. There were some significant differences between the staining of acinar and duct cells. In all intercalated and striated duct cells the staining is dense in the perinuclear space and in the rough endoplasmic reticulum. Osmiophility was not detected in the Golgi complex of intercalated duct cells. The staining was also lacking in the perinuclear space and endoplasmic reticulum of the acinar cells. The cis face of the Golgi complex and numerous transitional vesicles in the acinar cells showed variability of the reduction capacity of their membrane segments. In chronically treated acinar cells Os black was lacking in the Golgi cisternae, except that the numerous transitional vesicles were heavily stained. These results reveal characteristic differences of reduction capacity of endomembrane compartments in different parotid glandular cells, as well as between untreated and treated acinar cells.  相似文献   

19.
Summary Using the indirect immunofluorescent technique with anti-somatostatin serum, the distribution of scattered cells in the duct system of submandibular glands in the Monkey, Macaca irus has been assessed. In both males and females, these cells are located only in some portions of the duct system, e.g. striated ducts and excretory ducts. No immunoreactive cells were observed in the intercalated ducts or in secretory endpieces. The lymphatic node constantly adjacent to the submandibular gland did not contain immunoreactive cells. In the parotid glands, no immunoreactive cells to antisomatostatin immuneserum were ever observed  相似文献   

20.
Summary Osmium impregnation was used to show possible differences of reduction capacity of perinuclear space, rough endoplasmic reticulum and the Golgi apparatus of unstimulated mouse parotid gland and in the gland after repeated pharmacological doses of isoproterenol. There were some significant differences between the staining of acinar and duct cells. In all intercalated and striated duct cells the staining is dense in the perinuclear space and in the rough endoplasmic reticulum. Osmiophility was not detected in the Golgi complex of intercalated duct cells. The staining was also lacking in the perinuclear space and endoplasmic reticulum of the acinar cells. The cis face of the Golgi complex and numerous transitional vesicles in the acinar cells showed variability of the reduction capacity of their membrane segments. In chronically treated acinar cells Os black was lacking in the Golgi cisternae, except that the numerous transitional vesicles were heavily stained.These results reveal characteristic differences of reduction capacity of endomembrane compartments in different parotid glandular cells, as well as between untreated und treated acinar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号