首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Granitic materials represent a common erosive substrate in California and much of the western United States. When granitic rocks weather, they disintegrate into coarse textured, non-cohesive substrates, known generally as decomposed granite (DG). Because of low moisture and N availability, revegetation of these substrates for erosion control is difficult. If nitrate based fertilizers are used, they can be rapidly leached, while NH 4 + fertilizers may be sequestered mineralogically by interlayer fixation. In this study, we focus on the occurrence of NH 4 + fixation on a decomposed granitic substrate and show that the fixation capacities of these sandy saprolites are significant despite analyses indicating that the samples are predominantly quartz, have low clay contents and have low cation exchange capacities (CEC). At field loading rates equivalent to less than 300 kg N ha−1, 36–42% of added NH 4 + may become unavailable to plants due to interlayer collapse and fixation for an unknown period of time. Ammonium fixation did not vary significantly in relation to substrate weathering class in these samples. Oriented X-ray diffraction analysis revealed the presence of vermiculite in particle size fractions from clay to very coarse sands. While other studies have identified silt as the most active fraction, the relative fixation capacity of these granite saprolites was greatest in the fine and very fine sand fractions when considered on a gram for gram basis of each individual particle size. We found that the extractant cation also influenced the measured levels of NH 4 + fixation in these granite saprolites. At loading rates of 0–150 kg NH 4 + ha−1, extraction with KCl resulted in apparent NH 4 + fixation capacities that were twice as great as those found with NaCl extractions when tested at low NH 4 + concentrations and close to 35% greater at higher NH 4 + amendment loading. Estimation of available ammonium in the decomposed granite using conventional KCl extraction methods appears to cause fixation, rather than extraction of at least part of the substrate’s NH 4 + content.  相似文献   

2.
This work reports the characterisation of the Azorhizobium caulinodans amtB gene, the deduced protein sequence of which shares similarity to those of several ammonium transporters. amtB is located downstream from glnK, a glnB-like gene. It is cotranscribed with glnK from an NtrC- and σ54-dependent promoter. glnK and amtB insertion mutant strains have been isolated. Methylammonium uptake was assayed in these strains and in other mutant strains in which the regulation of nitrogen metabolism is impaired. Our data suggest that the AmtB protein is an ammonium transporter, which is mainly regulated by NtrC in response to nitrogen availability. Received: 2 February 1998 / Accepted: 20 March 1998  相似文献   

3.
Seventy-one cyanobacteria containing cultures were enriched from various soil and water locations either under aerobic and/or anaerobic conditions on agar medium selective for nitrogen fixation. Kept under argon containing 1% CO2 for 24 and 48 h most of these cultures evolved hydrogen at very variable rates up to 116 l per mg chlorophyll and hour as a mean value over a time period of 24h. Several samples evolved hydrogen more efficiently compared with known hydrogen producing pure strains from culture collections. Thirty-one of the investigated cultures showed a hydrogen formation higher than 10 l per mg chlorophyll and hour measured over 24 or 48 h. Among these all the morphological forms of cyanobacteria i.e. unicellular and filamentous with or without heterocysts are found. Hence, selecting for nitrogen fixing cyanobacteria seems to be a practical method to find efficient hydrogen producers.  相似文献   

4.
Summary Hydrogenase and nitrogenase activities of sulfate-reducing bacteria allow their adaptation to different nutritional habits even under adverse conditions. These exceptional capabilities of adaptation are important factors in the understanding of their predominant role in problems related to anaerobic metal corrosion. Although the D2–H+ exchange reaction indicated thatDesulfovibrio desulfuricans strain Berre-Sol andDesulfovibrio gigas hydrogenases were reversible, the predominant activity in vivo was hydrogen uptake. Hydrogen production was restricted to some particular conditions such as sulfate or nitrogen starvation. Under diazotrophic conditions, a transient hydrogen evolution was followed by uptake when dinitrogen was effectively fixed. In contrast, hydrogen evolution proceeded when acetylene was substituted as the nitrogenase substrate. Hydrogen can thus serve as an electron donor in sulfate reduction and nitrogen metabolism.  相似文献   

5.
Four new ligands containing a pyridine or thiazole group and one or more N-(diphenylphosphinomethyl)amine functions have been prepared and employed for the synthesis of Mo(0) and W(0) carbonyl and dinitrogen complexes. For comparison coordination of the literature-known ligand N,N-bis(diphenylphosphinomethyl)-methylamine (PNP, 1) to such systems has been investigated as well. Two new ligands are N,N-bis(diphenylphosphinomethyl)-2-aminopyridine (pyNP2, 2) and N,N′-bis(diphenylphosphinomethyl)-2,6-diaminopyridine (PpyP, 3). In a third new ligand, N-diphenylphosphinomethyl-2-aminothiazole (thiazNP, 4), the pyridine group is replaced by thiazol. Finally, the pentadentate ligand N,N,N′,N′-tetrakis(diphenylphosphinomethyl)-2,6-diaminopyridine (pyN2P4, 5) has been synthesized. Coordination of ligands 2, 3 and 4 to low-valent metal centers is investigated on the basis of the three molybdenum carbonyl complexes [Mo(CO)3(NCCH3)(pyNP2)] (6), [Mo(CO)4(PpyP)] (7) and [Mo(CO)4(thiazNP)] (8), respectively, all of which are structurally characterized. Moreover, employing ligands 1 and 2 the two dinitrogen complexes [W(N2)2(dppe)(PNP)] (9) and [Mo(N2)2(dppe)(pyNP2) (10), respectively, are prepared. Both systems are investigated by vibrational and NMR spectroscopy; in addition, complex 10 is structurally characterized.  相似文献   

6.
7.
This work examines a pH control method using ammonium (NH(4)(+)) as a sustainable proton shuttle in a CEM-equipped BES. Current generation was sustained by adding NH(3) or ammonium hydroxide (NH(4)OH) to the anolyte, controlling its pH at 7. Ammonium ion migration maintained the catholyte pH at approximately 9.25. Such NH(4)(+)/NH(3) migration accounted for 90±10% of the ionic flux in the BES. Reintroducing the volatilized NH(3) from the cathode into the anolyte maintained a suitable anolyte pH for sustained microbial-driven current generation. Hence, NH(4)(+)/NH(3) acted as a proton shuttle that is not consumed in the process.  相似文献   

8.
Summary Aerobic and anaerobic N2-fixing bacteria developed in the rhizosphere of barley seedlings and exhibited N2ase activity when seedlings were grown in sterilized sand-nutrient cultures containing low levels of combined nitrogen. The source of the N2-fixing bacteria appeared to be the seed. Average daily rates up to 0.9 μmoles C2H4 h−1 g−1 dry root tissue were measured, but the intensity of the activity was affected by moisture levels and concentration of combined N in the rhizosphere. Removal and washing of the roots did not remove the activity, and roots remained active even after surface-sterilization. An unidentified aerobic N2-fixing bacterium was isolated from the rhizoplane of active barley roots. Inoculation of barley seedlings with the aerobic N2-fixing bacterium enhanced N2ase activity of excised roots 10-fold, with average rates of 0.9, 1.1 and 1.3 μmoles h−1 g−1 dry root assayed under pO2 of 0.01, 0.02 and 0.04 atm respectively. The aerobic N2-fixing bacterium also exhibited N2ase activity when inoculated into the rhizosphere of oat, rice and wheat seedlings. Microscopic observations of sterilized live and stained barley roots suggest that the aerobic N2-fixing bacterium is an endophyte which infects root tissue and metamorphoses into vesicle-like structures.  相似文献   

9.
Variation in the stable N isotope ratio (δ15N) of plants and soils often reflects the influence of environment on the N cycle. We measured leaf δ15N and N concentration ([N]) on all individuals of Prosopis glandulosa (deciduous tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) present within a belt transect 308 m long × 12 m wide in a subtropical savanna ecosystem in southern Texas, USA in April and August 2005. Soil texture, gravimetric water content (GWC), total N and δ15N were also measured along the transect. At the landscape scale, leaf δ15N was negatively related to elevation for all the three species along this topoedaphic sequence. Changes in soil δ15N, total N, and GWC appeared to contribute to this spatial pattern of leaf δ15N. In lower portions of the landscape, greater soil N availability and GWC are associated with relatively high rates of both N mineralization and nitrification. Both soil δ15N and leaf [N] were positively correlated with leaf δ15N of non-N2 fixing plants. Leaf δ15N of P. glandulosa, an N2-fixing legume, did not correlate with leaf [N]; the δ15N of P. glandulosa’s leaves were closer to atmospheric N2 and significantly lower than those of C. hookeri and Z. fagara. Additionally, at smaller spatial scales, a proximity index (which reflected the density and distance of surrounding P. glandulosa trees) was negatively correlated with leaf δ15N of C. hookeri and Z. fagara, indicating the N2-fixing P. glandulosa may be important to the N nutrition of nearby non-N2-fixing species. Our results indicate plant 15N natural abundance can reflect the extent of N retention and help us better understand N dynamics and plant-soil interactions at ecosystem and landscape scales.  相似文献   

10.
The contribution of nitrogen fixation to the nitrogen budget of Lake Mendota has been calculated. On average, the equivalent of 1.28 × 105 kg of NH3 (as determined by the acetylene reduction technique) was added to this eutrophic lake during June, July and August. Diurnal variation (approximately two-thirds of the day's fixation occurs prior to noon) in algal nitrogen fixation, and variation of fixation with depth (3.6% of the fixation in the column occurs in the top decimeter) were characterized as prerequisites to this calculation.  相似文献   

11.
Cloned plants of Alnus incana (L.) Moench were inoculated and grown without combined nitrogen for seven weeks. The effects of ammonium on the function and structure of the root nodules were studied by adding 20 mM NH4Cl (20 mM KCl=control) for four days. Nitrogenase activity decreased to ca. 50% after one day and to less than 10% after two days in ammonium treated plants, but was unaffected in control plants. The results were similar at photon flux densities of 200 and 50 mol m-2 s-1. At the higher light level the effect was concentration dependent between 2 and 20 mM NH4Cl. The recovery was slow, and more than 11 d were needed for plants treated with 20 mM ammonium to reach initial activity. The distribution of 14C to the root nodules after assimilation of 14CO2 by the plants was not changed by the ammonium treatment. Microscopical studies of root nodules showed high frequencies of endophyte vesicles being visually damaged in nodules from ammonium-treated plants, but not in nodules from control plants. When nitrogenase activity was restored, visually damaged vesicles were again few, whereas young developing vesicles were numerous. The slow recovery, the 14C-translocation pattern, and the structural changes of the endophyte indicate a more complex mechanism of ammonium influence than simply a short-term reduction in supply of carbon compounds to the nodules.  相似文献   

12.
Three species of anoxygenic phototrophic heliobacteria, Heliobacterium chlorum, Heliobacterium gestii, and Heliobacillus mobilis, were studied for comparative nitrogen-fixing abilities and regulation of nitrogenase. Significant nitrogenase activity (acetylene reduction) was detected in all species grown photoheterotrophically on N2, although cells of H. mobilis consistently had higher nitrogenase activity than did cells of either H. chlorum or H. gestii. Nitrogen-fixing cultures of all three species of heliobacteria were subject to switch-off of nitrogenase activity by ammonia; glutamine also served to switch-off nitrogenase activity but only in cells of H. mobilis and H. gestii. Placing photosynthetically grown heliobacterial cultures in darkness also served to switch-off nitrogenase activity. Dark-mediated switch-off was complete in lactate-grown heliobacteria but in pyruvate-grown cells substantial rates of nitrogenase activity continued in darkness. In all heliobacteria examined ammonia was assimilated primarily through the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway although significant levels of alanine dehydrogenase were present in extracts of cells of H. gestii, but not in the other species. The results suggest that heliobacteria, like phototrophic purple bacteria, are active N2-fixing bacteria and that despite their gram-positive phylogenetic roots, heliobacteria retain the capacity to control nitrogenase activity by a switch-off type of mechanism. Because of their ability to fix N2 both photosynthetically and in darkness, it is possible that heliobacteria are significant contributors of fixed nitrogen in their paddy soil habitat.  相似文献   

13.
14.
Nitrogen is an essential component of nearly all complex macromolecules in a bacterial cell, such as proteins, nucleic acids and cell wall components. Accordingly, most prokaryotes have developed elaborate control mechanisms to provide an optimal supply of nitrogen for cellular metabolism and to cope with situations of nitrogen limitation. In this review, recent advances in our knowledge of ammonium uptake, its assimilation, and related regulatory systems in Corynebacterium glutamicum, a Gram-positive soil bacterium used for the industrial production of amino acids, are summarized and discussed with respect to the situation in the bacterial model organisms, Escherichia coli and Bacillus subtilis, and in comparison to the situation in other actinomycetes, namely in mycobacteria and streptomycetes. The regulatory network of nitrogen control in C. glutamicum seems to be a patchwork of different elements. It includes proteins similar to the UTase/GlnK pathway of E. coli and expression regulation by a repressor protein as in B. subtilis, but it lacks an NtrB/NtrC two-component signal transduction system. Furthermore, the C. glutamicum regulation network has unique features, such as a new sensing mechanism. Based on its extremely well-investigated central metabolism, well-established molecular biology tools, a public genome sequence and a newly-established proteome project, C. glutamicum seems to be a suitable model organism for other corynebacteria, such as Corynebacterium diphtheriae and Corynebacterium efficiens.  相似文献   

15.
Abstract. Significant levels of nitrogenase activity (nitrogen fixation) were demonstrated in three species of Arctic legumes ( Oxytropis maydelliana, O. arctobia and Astragalus alpinus ) growing in high tundra at Sarcpa Lake, Melville Peninsula, N.W.T. Nitrogenase activity of intact plants was correlated with the number of nodules per plant, with field soil temperatures and limited by water shortage. Activity in freshly detached nodules showed a plateau of maximum activity between 10°C and 25°C and a near linear decline with temperature down to 0°C. Unusually, the segmented nodules of all three species are perennial in which growth and leghaemoglobin production resumes each spring from an overwintering apical meristem. Nodules are most numerous in the warmer soil stratum (2–10 cm. depth). Other studies indicate that the arctic rhizobia belong to a single cold-adapted species which has co-evolved with the legumes of tundra.  相似文献   

16.
17.
Eighty soybean cultivars were assessed for their potential for nodulation and nitrogen fixation with indigenous rhizobia in a Nigerian soil. Seventy-six days after planting (DAP) 87%, 3% and 10% of the soybean cultivars had from 0 to 30, 31 to 60 and over 61 nodules/plant, respectively. Only 8% had a nodule dry weight of 600 to 1100 mg/plant. At 84 DAP the proportion of nitrogen derived from the atmosphere (Ndfa) ranged from 0 to 65% 16% of the cultivars derived 51 to 65% of their N2 from the atmosphere. The diversity of soybean germplasm and the variation in nodulation and N2 fixation permitted the selection of the five best cultivars in terms of their compatibility with indigenous rhizobia, % Ndfa and the amount of N2 which they fixed.  相似文献   

18.
Nitrogen fixation was measured in situ by the 15N tracer technique in the Bay of Quinte, Lake Ontario, and three lake enclosures with different nutrient enrichment. The fixation rates in the Bay were low but detectable during the summer season. The fixation activities were found to be correlated with the presence of nitrogen-fixing blue-green algae and the distribution of the algal species in the water was affected by nitrate enrichment. The study showed that, with the addition of nitrate, species not able to fix atmospheric nitrogen became predominant. However, in the absence of external nitrogen (i.e., nitrate), species able to fix nitrogen became dominant. Phosphorus enrichment alone did result in higher N-fixation rates in the water and, without the addition of phosphorus, the fixation rates are lower and fluctuate throughout the season, presumably dependent on the availability of phosphorus in the water.A comparison between the 15N-isotopic method and the acetylene reduction method is reported and the factors involved in the variations between these two methods are discussed.  相似文献   

19.
Summary Nitrogen-fixing activity in hardwood forests of the northeastern United States occurred in wood litter, greater than 2 cm in diameter. Activity in large dead wood was independent of species, in the case of deciduous wood litter, but was restricted to partially decayed wood with a high moisture content. Maximum rates of activity were observed in the summer months, minimum rates in the winter. Evidence from six stands of varying ages showed that fixation in large wood litter occurred in only 25% of the samples assayed.Fixation was highest in the youngest, 4 years, and oldest, over 200 years, stands; being about 2 kg/ha/yr. The quantity of nitrogen fixed appears to be related to the biomass of dead wood. Large amounts of wood litter in the youngest stands were from slash left after cutting. As the supply of slash is exhausted by decay, nitrogen fixation decreases, with a low around year 20. Fixation then gradually increases as natural thinning adds wood to the litter compartment.Apparently, the amount of nitrogen fixed in dead wood the first 20 years following clearcutting can only replace a modest fraction of the amount lost as a result of the cutting and product removal. Finally, the results indicate that nitrogen fixation in wood litter does not equal nitrogen fixation in a northern hardwood forest calculated using a mass balance approach, suggesting that additional nitrogen inputs exist.  相似文献   

20.
A modifiedin situ technique for measuring heterotrophic nitrogen fixing (acetylene reducing) activity associated to rice is proposed. Ethylene evolution rates measured in opaque cylinders covering the stems of rice plants which have been cut 10 cm over the water level were found independent of the diurnal cycle. Cutting of the leaves resulted in decreased variation between plants and suppression of the acceleration of ethylene evolution rate after 12 h incubation as compared to intact plants. In both systems ethylene evolved was swept by a current of methane and the molar ratio between methane and ethylene was stabilized after 12 h. Methane evolution rates remained stable during 12 h and more than 24 h in whole plants and cut plants respectively. It is suggested that alteration in the active gas transport system after 12 h incubation under 10% acetylene may lead to erroneous evaluation of the actual ethylene production in the root's environment. The average values of ethylene evolution rates by cut plants between 12 and 24 h of incubation may be used for comparative studies of nitrogen fixing activity associated to flooded rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号