首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 70-kDa protoxin of Cry11A, a dipteran-specific insecticidal protein, was processed by trypsin into 36- and 32-kDa fragments. To investigate the potent function of the two processed fragments, a GST (Glutathione-S-transferase) fusion protein of each polypeptide was constructed. While neither the 36- nor the 32-kDa fragment was toxic to Culex pipiens larvae, coexpression of the two fragments restored the insecticidal activity. Furthermore, the coprecipitation experiment demonstrated that the 36-kDa fragment was associated with the 32-kDa fragment. It was, therefore, shown that the coexistence of the two processed fragments of Cry11A was essential for the toxicity. The mutant of the 36-kDa fragment lacking the region from Gly(257) to Arg(360) bound to the 32-kDa fragment but the coexpression with the 32-kDa fragment resulted in no toxicity, suggesting that this region was involved in insecticidal activity.  相似文献   

2.
Dipteran-specific insecticidal protein Cry4A is produced as a protoxin of 130 kDa in Bacillus thuringiensis subsp. israelensis. Here we performed the in vitro processing of Cry4A and showed that the 130-kDa protoxin of Cry4A was processed into the two protease-resistant fragments of 20 and 45 kDa through the intramolecular cleavage of a 60-kDa intermediate. The processing into these two fragments was also observed in vivo. To investigate functional properties of the two fragments, GST (glutathione S-transferase) fusion proteins of the 60-kDa intermediate and the 20- and 45-kDa fragments were constructed. Neither the GST-20-kDa fusion protein (GST-20) nor the GST-45-kDa fusion protein (GST-45) was actively toxic against mosquito larvae of Culex pipiens, whereas the GST-60-kDa intermediate fusion protein (GST-60) exhibited significant toxicity. However, when the two fusion proteins GST-20 and GST-45 coexisted, significant toxicity was observed. The coprecipitation experiment demonstrated that the two fragments associated with each other. Therefore, it is strongly suggested that the two fragments formed an active complex of apparently 60 kDa. A mutant of the 60-kDa protein which was apparently resistant to the intramolecular cleavage with the midgut extract of C. pipiens larvae had toxicity slightly lower than that of GST-60.  相似文献   

3.
Dipteran-specific insecticidal protein Cry4A is produced as a protoxin of 130 kDa in Bacillus thuringiensis subsp. israelensis. Here we performed the in vitro processing of Cry4A and showed that the 130-kDa protoxin of Cry4A was processed into the two protease-resistant fragments of 20 and 45 kDa through the intramolecular cleavage of a 60-kDa intermediate. The processing into these two fragments was also observed in vivo. To investigate functional properties of the two fragments, GST (glutathione S-transferase) fusion proteins of the 60-kDa intermediate and the 20- and 45-kDa fragments were constructed. Neither the GST–20-kDa fusion protein (GST-20) nor the GST–45-kDa fusion protein (GST-45) was actively toxic against mosquito larvae of Culex pipiens, whereas the GST–60-kDa intermediate fusion protein (GST-60) exhibited significant toxicity. However, when the two fusion proteins GST-20 and GST-45 coexisted, significant toxicity was observed. The coprecipitation experiment demonstrated that the two fragments associated with each other. Therefore, it is strongly suggested that the two fragments formed an active complex of apparently 60 kDa. A mutant of the 60-kDa protein which was apparently resistant to the intramolecular cleavage with the midgut extract of C. pipiens larvae had toxicity slightly lower than that of GST-60.  相似文献   

4.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

5.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when (125)I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

6.
Substructure of chicken gizzard smooth muscle alpha-actinin molecule was deduced by domainal mapping of the proteolytic fragments with alpha-chymotrypsin. There were three chymotryptic cleavage sites (Sites I, II, and III, from the amino terminus). Cleavage at Site I generated two fragments, i.e. an NH2-terminal 36-kDa fragment and a COOH-terminal 70-kDa fragment. The 70-kDa fragment generated either a 55-kDa fragment by cleavage at Site II or a 65-kDa fragment by cleavage at Site III. Purified NH2-terminal 36-kDa fragment bound to F-actin, whereas the 55-kDa fragment formed a dimeric molecule. Circular dichroism and electron microscopic experiments demonstrated that the alpha-helical content of the 55-kDa fragment was 14% higher than that of native gizzard alpha-actinin, coinciding with the apparently rod-shaped configuration of this fragment. A 110-kDa product was generated from two 55-kDa fragments in a cross-linking study with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. Two cross-linkable sites in the 55-kDa, A- and B-site, were shown to be involved in this reaction. Further, it was demonstrated by using N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide labeling and immunoblotting analyses that the A-site on one 55-kDa fragment was cross-linked to the B-site on the other. These results suggest that smooth muscle alpha-actinin formed an antiparallel dimeric molecule in which the 55-kDa fragments connected the two actin-binding domains composed of the 36-kDa fragments.  相似文献   

7.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when 125I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

8.
The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).  相似文献   

9.
Helices 4 and 5 of the Bacillus thuringiensis Cry4Ba delta-endotoxin have been shown to be important determinants for mosquito-larvicidal activity, likely being involved in membrane-pore formation. In this study, the Cry4Ba mutant protein containing an additional engineered tryptic cleavage site was used to produce the alpha4-alpha5 hairpin peptide by an efficient alternative strategy. Upon solubilization of toxin inclusions expressed in Escherichia coli and subsequent digestion with trypsin, the 130-kDa mutant protoxin was processed to protease-resistant fragments of ca. 47, 10 and 7 kDa. The 7-kDa fragment was identified as the alpha4-loop-alpha5 hairpin via N-terminal sequencing and mass spectrometry, and was successfully purified by size-exclusion FPLC and reversed-phase HPLC. Using circular dichroism spectroscopy, the 7-kDa peptide was found to exist predominantly as an alpha-helical structure. Membrane perturbation studies by using fluorimetric calcein-release assays revealed that the 7-kDa helical hairpin is highly active against unilamellar liposomes compared with the 65-kDa activated full-length toxin. These results directly support the role of the alpha4-loop-alpha5 hairpin in membrane perturbation and pore formation of the full-length Cry4Ba toxin.  相似文献   

10.
Adenylate cyclase (AC) toxin from Bordetella pertussis penetrates eukaryotic cells and upon activation by calmodulin generates unregulated levels of intracellular cAMP. The process of toxin penetration into sheep erythrocytes was resolved into three consecutive steps including insertion, translocation, and intracellular cleavage. Insertion of the toxin into the cell membrane occurred over a wide temperature range (4-36 degrees C). In contrast, translocation of the toxin, i.e. transfer of the NH2-terminal catalytically active fragment across the membrane, occurred only above 20 degrees C and was highly temperature-dependent. While a single exposure of the toxin to Ca2+ was sufficient for its insertion into the plasma membrane, toxin translocation required exogenous Ca2+ at mM concentrations. Translocation was not affected by pretreatment of cells with trypsin, N-ethylmaleimide, and sodium carbonate at alkaline pH. The NH2-terminal fragment of the toxin was cleaved in the cell releasing the 45-kDa active AC into the cytosol. The cleavage was blocked by treatment of cells with N-ethylmaleimide. It is hypothesized that the COOH-terminal portion of the toxin creates in the membrane a channel through which the NH2-terminal fragment is translocated.  相似文献   

11.
The epitope of monoclonal antibody (mAb 4A), which recognizes the alpha subunit of the rod G protein, Gt, has been suggested to be both at the carboxyl terminus (Deretic, D., and Hamm, H.E. (1987) J. Biol. Chem. 262, 10839-10847) and the amino terminus (Navon, S.E., and Fung, B.K.-K. (1988) J. Biol. Chem. 263, 489-496) of the molecule. To characterize further the mAb 4A binding site on alpha t and to resolve the discrepancy between these results limited proteolytic digestion of Gt or alpha t using four proteases with different substrate specificities has been performed. Endoproteinase Arg-C, which cleaves the peptide bond at the carboxylic side of arginine residues, cleaved the majority of alpha t into two fragments of 34 and 5 kDa. The alpha t 34-kDa fragment in the holoprotein, but not alpha t-guanosine 5'-O-(3-thiotriphosphate), was converted further to a 23-kDa fragment. A small fraction of alpha t-GDP was cleaved into 23- and 15-kDa fragments. Endoproteinase Lys-C, which selectively cleaves at lysine residues, progressively removed 17 and then 8 residues from the amino terminus, forming 38- and 36-kDa fragments. Staphylococcus aureus V8 protease is known to remove 21 amino acid residues from the amino-terminal region of alpha t, with the formation of a 38-kDa fragment. L-1-Tosylamido-2-phenylethyl chloromethyl ketone-treated trypsin cleaved alpha t progressively into fragments of known amino acid sequences (38, then 32 and 5, then 21 and 12 kDa) and a transient 34 kDa fragment. The binding of mAb 4A to proteolytic fragments was analyzed by Western blot and immunoprecipitation. The major fragments recognized by mAb 4A on Western blots were the 34- and 23-kDa fragments obtained by endoproteinase Arg-C and tryptic digestion. Under conditions that allowed sequencing of the 15- and 5-kDa fragments neither the 34- nor the 23-kDa fragments could be sequenced by Edman degradation, indicating that they contained a blocked amino terminus. The smallest fragment that retained mAb 4A binding was the 23-kDa fragment containing Met1 to Arg204. Thus the main portion of the mAb 4A antigenic site was located within this fragment, indicating that the carboxyl-terminal residues from Lys205 to Phe350 were not required for recognition by the antibody. Additionally, the antibody did not bind the 38- and 36-kDa or other fragments containing the carboxyl terminus, showing that the amino-terminal residues from Met1 to Lys17 were essential for antibody binding to alpha t.  相似文献   

12.
When the enzymatically active A-fragment of diphtheria toxin is translocated to the cytosol, the B-fragment inserts into the membrane in such a way that a 25-kDa polypeptide becomes shielded from proteases added to the external medium. We have attempted to determine the boundaries of this polypeptide within the toxin B-fragment as well as the topology of the B-fragment in the membrane. Chemical cleavage of the 25-kDa polypeptide with hydroxylamine and o-iodosobenzoic acid yielded fragments of sizes indicating that the 25-kDa polypeptide starts at residue approximately 300 and extends to the COOH-terminal end. Experiments where the toxin was labeled with [35S]cysteine at distinct positions of the B-fragment supported this conclusion. Treatment of cells with inserted B-fragment with L-1-tosyl-amido-2-phenylethyl chloromethyl ketone-treated trypsin and with V8 protease from Staphylococcus aureus yielded protected 27- and 30-kDa fragments in addition to 25 kDa, indicating that the region 240-264 is also at the outside. The topology of the inserted B-fragment is discussed.  相似文献   

13.
14.
Bacillus thuringiensis protoxins undergo proteolytic processing in the midgut of susceptible insects to become active. The ability to process the Cry11Bb1 protoxin by trypsin and Culex quinquefasciatus larval gut extracts was tested. The protease activity indicated by the appearance of proteolytic products increased with an increment in pH, with the highest activity being observed at pH 10.6. A time course study showed the proteolysis of the 94-kDa Cry11Bb protein ending with the production of fragments of relative molecular mass of 30 and 35 kDa within 5 min. In vitro, gut proteases extract cleaved the solubilized toxin between Ser59 and Ile60 and between Ala395 and Asn396, generating a 30-kDa N-terminal and a 35-kDa C-terminal fragment, respectively. Similarly, mosquito larvae processed in vivo the parasporal inclusions, generating the same fragments as those observed in vitro. The Cry11Bb1 protoxin activated with trypsin or gut proteases showed larvicidal activity against C. quinquefasciatus first instar larvae. The data suggest that gut proteases participate in the activation of CryllBbl protoxin, generating at least two different fragments on which the activity could reside.  相似文献   

15.
The mosquitocidal toxin (MTX) from Bacillus sphaericus SSII-1 is a approximately 97-kDa protein sharing sequence homology within the N terminus with the catalytic domains of various bacterial ADP-ribosyltransferases. Here we studied the proteolytic activation of the ADP-ribosyltransferase activity of MTX. Chymotrypsin treatment of the 97-kDa MTX holotoxin (MTX(30-870)) results in a 70-kDa putative binding component (MTX(265-870)) and a 27-kDa enzyme component (MTX(30-264)), possessing ADP-ribosyltransferase activity. Chymotryptic cleavage of an N-terminal 32-kDa fragment of MTX (MTX(30-308)) also yields MTX(30-264), but the resulting ADP-ribosyltransferase activity is much greater than that of the processed MTX(30-870). Kinetic studies revealed a K(m) NAD value of 45 microm for the processed 32-kDa MTX fragment, and a K(m) NAD value of 1300 microm for the processed holotoxin. Moreover, the k(cat) value for the activated MTX(30-308) fragment was about 10-fold higher than that for the activated holotoxin (MTX(30-870)). Precipitation analysis showed that the 70-kDa proteolytic fragment of MTX remains noncovalently bound to the N-terminal 27-kDa fragment, thereby inhibiting ADP-ribosyltransferase and NAD glycohydrolase activities. Glu(197) of MTX(30-264) was identified as the "catalytic" glutamate that is conserved in all ADP-ribosyltransferases. Whereas mutated MTX(30-264)E197Q has neither ADP-ribosyltransferase nor NAD glycohydrolase activity, mutated MTX(30-264)E195Q possesses glycohydrolase activity but not transferase activity. Transfection of HeLa cells with a vector encoding a fusion protein of MTX(30-264) with a green fluorescent protein led to cytotoxic effects characterized by cell rounding and formation of filopodia-like protrusions. These cytotoxic effects were not observed with the catalytically inactive MTX(30-264)E197Q mutant, indicating that the MTX enzyme activity is essential for the cytotoxicity in mammalian cells.  相似文献   

16.
Sporulation-associated activation of Bacillus sphaericus larvicide.   总被引:10,自引:2,他引:8       下载免费PDF全文
Preparations of the larvicidal crystal from 46-h cultures of Bacillus sphaericus 2362 contain 125-, 110-, 63-, and 43-kilodalton (kDa) proteins (P. Baumann, B. M. Unterman, L. Baumann, A.H. Broadwell, S.J. Abbene, and R.D. Bowditch, J. Bacteriol. 163:738-747, 1985). The 63- and 43-kDa proteins, which have been purified, are not immunologically cross-reactive, and only the 43-kDa protein is toxic to mosquito larvae. Since antigenic determinants of the two smaller proteins have been detected in the higher-molecular-weight proteins (125 and 110 kDa), it has been suggested that the latter are precursors of the 43- and 63-kDa peptides. In the present study, purified 110-kDa protein was found to be toxic to the larvae of Culex pipiens (50% lethal concentration = 115 ng/ml). A luciferase-luciferin assay for intracellular ATP as well as an assay based on the exclusion of Trypan Blue by live cells indicated that the 110-kDa protein had no effect on tissue-culture-grown cells of C. quinquefasciatus, while cells exposed to the 43-kDa protein rapidly lost viability (50% lethal concentration = 54 microgram(s)/ml by the intracellular ATP assay). These findings suggested that the 110-kDa protein and, by extension, the 125-kDa protein are protoxins which are activated during sporulation by cleavage to a 43-kDa toxin. To further investigate the origins and relationships of the crystal proteins of B. sphaericus, we analyzed samples during the growth and sporulation of the culture. Synthesis of crystal proteins was initiated at the end of exponential growth and was completed after about 7 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Osteopontin (OPN) is an acidic 70-kDa glycoprotein that is cleaved by proteases to yield 45-kDa and 24-kDa fragments. The 70-kDa and 45-kDa proteins contain a Gly-Arg-Gly-Asp-Ser (GRGDS) sequence that binds to cell surface integrins (primarily alpha(v)beta(3) heterodimer) to promote cell-cell attachment and cell spreading. A 70-kDa acidic protein was previously detected by two-dimensional (2D) PAGE in Day 17 pregnant endometrial cytosolic extracts using Stainsall and identified as immunoreactive OPN using Western blotting. Three forms of immunoreactive OPN proteins (70, 45, and 24 kDa) were detected by 1D PAGE and Western blot analysis of endometrial extracts. OPN protein in endometrial extracts did not differ between cyclic and pregnant ewes. However, the amount of 45-kDa OPN increased in uterine flushings from pregnant ewes between Days 11 and 17. Immunoreactive OPN was localized to luminal and glandular epithelia of both cyclic and pregnant ewes, and to trophectoderm of Day 19 conceptuses. The alpha(v) and beta(3) integrins were detected on Day 19 endometrium and conceptuses by immunofluorescence. It was reported that OPN mRNA increases in the uterine glands of pregnant ewes and secretion of OPN protein into the uterine lumen increases during early pregnancy. The present results demonstrate accumulation of OPN protein on endometrial LE and conceptus trophectoderm. Therefore, it is hypothesized that progesterone and/or interferon-tau induce expression, secretion and/or proteolytic cleavage of OPN by uterine epithelium. Secreted OPN is then available as ligand for alpha(v)beta(3) integrin heterodimer on trophectoderm and uterus to 1) stimulate changes in morphology of conceptus trophectoderm and 2) induce adhesion between luminal epithelium and trophectoderm essential for implantation and placentation.  相似文献   

18.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

19.
Two forms (34 kDa and 32 kDa) of hemagglutinin/protease produced by Vibrio cholerae non-O1 were characterized. The hemagglutinin/protease purified by immunoaffinity column chromatography using a monoclonal antibody was essentially a 34-kDa form. By incubation of the purified 34-kDa form at 37 degrees C, it was processed (autodigested) to the 32-kDa form. The N-terminal 20 amino acid sequences of both the 34- and 32-kDa forms were identical, suggesting that proteolytic processing at the C-terminal region of the 34-kDa hemagglutinin/protease resulted in the 32-kDa form. With this shift, protease activity increased, but hemagglutinating activity decreased, suggesting that the C-terminal region of the hemagglutinin/protease is related to hemagglutinating activity.  相似文献   

20.
L M Coluccio  A Bretscher 《Biochemistry》1990,29(50):11089-11094
In intestinal microvilli, the 110K-calmodulin complex is the major component of the cross-bridges which connect the core bundle of actin filaments to the membrane. Our previous work showed that the 110-kDa polypeptide can be divided into three functional domains: a 78-kDa fragment that contains the ATPase activity and the ATP-reversible F-actin-binding site, a 12-kDa fragment required for binding calmodulin molecules, and a terminal 20-kDa domain of unknown function [Coluccio, L. M., & Bretscher, A. (1988) J. Cell Biol. 106, 367-374]. By analysis of limited alpha-chymotryptic cleavage products, we now show that the molecular organization is very similar to that described for the S1 fragment of myosin. The catalytic site was identified by photoaffinity labeling with [5,6-3H]UTP, and fragments binding F-actin were identified by cosedimentation assays. Cleavage of the 78-kDa fragment yielded major fragments of 32 and 45 kDa, followed by cleavage of the 45-kDa fragment to a 40-kDa fragment. Of these, only the 32-kDa fragment was labeled by [5,6-3H]UTP. Physical characterization revealed that the 45- and 32-kDa fragments exist as a complex that can bind F-actin, whereas the 40-kDa/32-kDa complex cannot bind actin. We conclude that the catalytic site is located in the 32-kDa fragment and the F-actin-binding site is present in the 45-kDa fragment; the ability to bind actin is lost upon further cleavage of the 45-kDa fragment to 40 kDa. Peptide sequence analysis revealed that the 45-kDa fragment lies within the molecule and suggests that the 32-kDa fragment is the amino terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号