首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Microtubules (MTs) are important cytoskeletal polymers engaged in a number of specific cellular activities including the traffic of organelles using motor proteins, cellular architecture and motility, cell division and a possible participation in information processing within neuronal functioning. How MTs operate and process electrical information is still largely unknown. In this paper we investigate the conditions enabling MTs to act as electrical transmission lines for ion flows along their lengths. We introduce a model in which each tubulin dimer is viewed as an electric element with a capacitive, inductive and resistive characteristics arising due to polyelectrolyte nature of MTs. Based on Kirchhoff’s laws taken in the continuum limit, a nonlinear partial differential equation is derived and analyzed. We demonstrate that it can be used to describe the electrostatic potential coupled to the propagating localized ionic waves. An erratum to this article can be found at  相似文献   

2.
Microtubules (MTs) are important cytoskeletal superstructures implicated in neuronal morphology and function, which are involved in vesicle trafficking, neurite formation and differentiation and other morphological changes. The structural and functional properties of MTs depend on their high intrinsic charge density and functional regulation by the MT depolymerising properties of changes in Ca2 +  concentration. Recently, we reported on remarkable properties of isolated MTs, which behave as biomolecular transistors capable of amplifying electrical signals (Priel et al., Biophys J 90:4639–4643, 2006). Here, we demonstrate that MT-bathing (cytoplasmic) Ca2 +  concentrations modulate the electrodynamic properties of MTs. Electrical amplification by MTs was exponentially dependent on the Ca2 +  concentration between 10 − 7 and 10 − 2 M. However, the electrical connectivity (coupling) of MTs was optimal at a narrower window of Ca2 +  concentrations. We observed that while raising bathing Ca2 +  concentration increased electrical amplification by MTs, energy transfer was highest in the presence of ethylene glycol tetraacetic acid (lowest Ca2 +  concentration). Our data indicate that Ca2 +  is an important modulator of electrical amplification by MTs, supporting the hypothesis that this divalent cation, which adsorbs onto the polymer’s surface, plays an important role as a regulator of the electrical properties of MTs. The Ca2 + -dependent ability of MTs to modulate and amplify electrical signals may provide a novel means of cell signaling, likely contributing to neuronal function.  相似文献   

3.
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that have a wide range of functions in cellular homeostasis and immunity. MTs can be induced by a variety of conditions including metals, glucocorticoids, endotoxin, acute phase cytokines, stress, and irradiation. In addition to their important immunomodulatory functions, MTs can protect essential cellular compartments from toxicants, serve as a reservoir of essential heavy metals, and regulate cellular redox potential. Many of the roles of MTs in the neuroinflammation, intestinal inflammation, and stress response have been investigated and were the subject of a session at the 6th International Congress on Stress Proteins in Biology and Medicine in Sheffield, UK. Like the rest of the cell stress response, there are therapeutic opportunities that arise from an understanding of MTs, and these proteins also provide potential insights into the world of the heat shock protein.  相似文献   

4.
无脊椎动物金属硫蛋白(MTs)多样性及其生态服务功能   总被引:14,自引:0,他引:14  
金属硫蛋白(MTs)是一类低分子量、半胱氨酸含量异常丰富的金属结合多肽,自从20世纪70年代中期发现海洋无脊椎动物MTs以来,MTs已被证明广泛存在于无脊椎动物的各个类群之中。无脊椎动物物种间的金属硫蛋白存在着显著差异,研究无脊椎动物MTs多样性并揭示其生态服务功能,在理论与实践上都至关重要。本文分析了无脊椎动物MTs的多样性:结合金属元素多样性、同形体及其变体的蛋白质遗传多样性和生态服务功能多样性,并讨论了 MTs的三个生态服务功能:MTs对重金属解毒和调节作用、MTs作为环境监测的生物标志物、MTs的环境重金属污染净化功能及其在环境污染治理中的作用。  相似文献   

5.
Two posttranslational modifications of alpha-tubulin, acetylation and detyrosination, are associated with stable microtubule (MT) populations, including those of neuronal processes. We have used a pluripotent embryonal carcinoma cell line, P19, to investigate changes in MT isotype and stability found in MT arrays during neurogenesis. This cell line has an advantage in that both commitment- and differentiation-related events can be observed. Uncommitted P19 cells have minimal arrays of acetylated and detyrosinated MTs. Following neuronal induction with retinoic acid (RA), indirect immunofluorescence microscopy shows that the first MT modifications occur during commitment and before any morphological change is observed. RA-induced cells initially polymerize a temporarily enlarged population of MTs. Included in this population is a new array of acetylated MTs arranged in a bundle of parallel MTs. This bundle is colchicine-stable, although no MT-associated proteins (MAPs) are detectable using a battery of anti-MAP antibodies. Observation of MT arrays with patterns that are intermediate between the early bundles and short neurites suggests that the acetylated MT bundle subsequently extends to form a neurite. MAP 2 is first detected at about the time of neurite extension. However, at this early stage of differentiation, MAP 2 is not yet limited to dendritic processes. This report provides the first evidence that the stable MTs of mature neurons may be initiated during neuronal commitment.  相似文献   

6.
Microtubule nucleation and release from the neuronal centrosome   总被引:12,自引:7,他引:5       下载免费PDF全文
We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron.  相似文献   

7.
Microtubules (MTs) are cytoskeletal polymers that exhibit dynamic instability, the random alternation between growth and shrinkage. MT dynamic instability plays an essential role in cell development, division, and motility. To investigate dynamic instability, simulation models have been widely used. However, conditions under which the concentration of free tubulin fluctuates as a result of growing or shrinking MTs have not been studied before. Such conditions can arise, for example, in small compartments, such as neuronal growth cones. Here we investigate by means of computational modeling how concentration fluctuations caused by growing and shrinking MTs affect dynamic instability. We show that these fluctuations shorten MT growth and shrinkage times and change their distributions from exponential to non-exponential, gamma-like. Gamma-like distributions of MT growth and shrinkage times, which allow optimal stochastic searching by MTs, have been observed in various cell types and are believed to require structural changes in the MT during growth or shrinkage. Our results, however, show that these distributions can already arise as a result of fluctuations in the concentration of free tubulin due to growing and shrinking MTs. Such fluctuations are possible not only in small compartments but also when tubulin diffusion is slow or when many MTs (de)polymerize synchronously. Volume and all other factors that influence these fluctuations can affect MT dynamic instability and, consequently, the processes that depend on it, such as neuronal growth cone behavior and cell motility in general.  相似文献   

8.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in several manufactured products. The small size of NPs facilitates their uptake into cells as well as transcytosis across epithelial cells into blood and lymph circulation to reach different sites, such as the central nervous system. Different studies have shown the risks that TiO2 NPs in the neuronal system and other organs present. As membrane-bound layer aggregates or single particles, TiO2 NPs can enter not only cells, but also mitochondria and nuclei. Therefore these particles can interact with cytoplasmic proteins such as microtubules (MTs). MTs are cytoskeletal proteins that are essential in eukaryotic cells for a variety of functions, such as cellular transport, cell motility and mitosis. MTs in neurons are used to transport substances such as neurotransmitters. Single TiO2 NPs in cytoplasm can interact with these proteins and affect their crucial functions in different tissues. In this study, we showed the effects of TiO2 NPs on MT polymerization and structure using ultraviolet spectrophotometer and fluorometry. The fluorescent spectroscopy showed a significant tubulin conformational change in the presence of TiO2 NPs and the ultraviolet spectroscopy results showed that TiO2 NPs affect tubulin polymerization and decrease it. The aim of this study was to find the potential risks that TiO2 NPs pose to human organs and cells.  相似文献   

9.
While microtubule (MT) arrays in cells are often focused at the centrosome, a variety of cell types contain a substantial number of non-centrosomal MTs. Epithelial cells, neurons, and muscle cells all contain arrays of non-centrosomal MTs that are critical for these cells' specialized functions. There are several routes by which non-centrosomal MTs can arise, including release from the centrosome, cytoplasmic assembly, breakage or severing, and stabilization from non-centrosomal sites. Once formed, MTs that are not tethered to the centrosome must be organized, which can be accomplished by means of self-organization or by capture and nucleation of MTs where they are needed. The presence of free MTs requires stabilization of minus ends, either by MT-associated proteins or by an end-capping complex. Although some of the basic elements of free MT formation and organization are beginning to be understood, a great deal of work is still necessary before we have a complete picture of how non-centrosomal MT arrays are assembled in specific cell types.  相似文献   

10.
Polarized cells, such as neuronal, epithelial, and fungal cells, all display a specialized organization of their microtubules (MTs). The interphase MT cytoskeleton of the rod-shaped fission yeast, Schizosaccharomyces pombe, has been extensively described by fluorescence microscopy. Here, we describe a large-scale, electron tomography investigation of S. pombe, including a 3D reconstruction of a complete eukaryotic cell volume at sufficient resolution to show both how many MTs there are in a bundle and their detailed architecture. Most cytoplasmic MTs are open at one end and capped at the other, providing evidence about their polarity. Electron-dense bridges between the MTs themselves and between MTs and the nuclear envelope were frequently observed. Finally, we have investigated structure/function relationships between MTs and both mitochondria and vesicles. Our analysis shows that electron tomography of well-preserved cells is ideally suited for describing fine ultrastructural details that were not visible with previous techniques.  相似文献   

11.
Microtubules (MTs) control cell replication, material transport and motion in eukaryotic cells, but MT role in several pathologies is still unknown. These functions are related to the MT physico-chemical properties and MT formation mode starting from tubulin molecules. This study describes a new method, based on the computer aided analysis of the electron paramagnetic resonance (EPR) spectra of selected spin probes to obtain structural and dynamical information on tubulins and MTs and the kinetics of MTs formation promoted by guanosine-5'-triphosphate (GTP). It was found that tubulin and MTs avoid radical quenching caused by ethylene glycol tetraacetic acid (EGTA). MT formation showed different kinetics as a function of tubulin concentration. At 5 mg/mL of tubulin, MTs were formed in 8 min. These results are also useful for getting information on MT-drug interactions.  相似文献   

12.
In neurons, tubulin is synthesized primarily in the cell body, whereas the molecular machinery for neurite extension and elaboration of microtubule (MT) array is localized to the growth cone region. This unique functional and biochemical compartmentalization of neuronal cells requires transport mechanisms for the delivery of newly synthesized tubulin and other cytoplasmic components from the cell body to the growing axon. According to the polymer transport model, tubulin is transported along the axon as a polymer. Because the majority of axonal MTs are stationary at any given moment, it has been assumed that only a small fraction of MTs translocates along the axon by saltatory movement reminiscent of the fast axonal transport. Such intermittent "stop and go" MT transport has been difficult to detect or to exclude by using direct video microscopy methods. In this study, we measured the translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required for delivery of newly synthesized tubulin to the growing nerve processes.  相似文献   

13.
Structurally, microtubules (MTs) are composed of protofilaments of the subunit protein. They are prominent components of the cytoplasmic matrix and perform important functions as cytoskeletal elements for the determination of cell shape and as key elements in intracellular motility such as mitosis and the translocation of cell organelles. These functions are thought to depend on the controlled assembly and disassembly of MTs in the cytoplasm and on the interaction of MTs with each other and with other cytoplasmic components. I think that apart from these cellular functions, MTs have the function of message transmission. Although no direct evidence is available to explain this point at present, a number of inddirect evidences have been obtained by many scientists e.g.: brain tissue has circumstantial the highest tubulin concentration, MTs have the property of self-assembly and disassembly, microtubule(MT) network is a key factor in differentiation of plant cells.  相似文献   

14.
Summary Overall cellular arrangement of cortical microtubules (MTs) is studied by reconstruction of MT images on serial thin sections. The mature root cortex ofHyacinthus orientalis L. cv. Delft blue is composed of elongate, highly vacuolate nondividing parenchyma cells. In longitudinal sections in these cells, MTs generally form parallel arrays at oblique angles to longitudinal cell axes. These MTs extend towards the transverse face of the cell where they appear in localized parallel arrays as well as in crisscross patterns. Repeated observations of oblique parallel arrays of MTs along the length of the cell and the continuity of MT bundles in serial sections suggest that MTs form a single helix in the cell. MTs in neighboring cells appear in sections either as parallel or as herringbone patterns, suggesting that the MT helices in these cells may spiral in the same or the opposite directions.Abbreviations MT Microtubule - MF microfibil - EM electron microscopy  相似文献   

15.
Microtubule-binding proteins from carrot   总被引:5,自引:0,他引:5  
Microtubules (MTs) participate in several processes of fundamental importance to growth and development in higher plants, yet little is known about the proteins with which they associate. Information about these molecules is important because they probably play a role in mediating functional and structural differences between various MT arrays. As a first step in gaining insight into this problem, we have isolated, from suspension-cultured cells of carrot (Daucus carota L.), non-tubulin proteins which bind to and affect microtubules (MTs) in vitro. These proteins were isolated using taxol-stabilized neuronal MTs as an affinity substrate. They cause MT bundling at substoichiometric concentrations, support the assembly of tubulin in vitro, and at low concentrations, decorate single MTs in a periodic fashion. The bundled MTs formed in vitro share similarities with those seen in situ in a variety of plant cells, including a center-center spacing of 34 nm, cold stability, resistance to anti-microtubule drugs, and sensitivity to calcium. The bundling activity is specific; other cationic proteins, as well as poly-L-lysine, do not behave in a similar manner. The bundling activity is insensitive to ATP. By assaying bundling activity with dark-field microscopy and employing standard biochemical procedures, a small number of polypeptides involved in the bundling process were identified. Affinity-isolated antibodies to one of these polypeptides (Mr=76000) were found to co-localize with MTs in the cortical array of protoplasts. Our findings are discussed with reference to the importance of these proteins in the cell and to their relationship to microtubule-associated proteins in other eukaryotes.Abbreviations DEAE diethylaminoethyl - MAP(s) microtubule-associated protein(s) - MT(s) microtubule(s) - Mr relative molecular mass - OD optical density - PM 50 mM 1,4-piperazinediethanesulfonic acid (Pipes), pH 6.9, 1 mM magnesium sulphate, 1 mM ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

16.
《Biophysical journal》2020,118(8):1914-1920
The densely packed microtubule (MT) array found in neuronal cell projections (neurites) serves two fundamental functions simultaneously: it provides a mechanically stable track for molecular motor-based transport and produces forces that drive neurite growth. The local pattern of MT polarity along the neurite shaft has been found to differ between axons and dendrites. In axons, the neurons’ dominating long projections, roughly 90% of the MTs orient with their rapidly growing plus end away from the cell body, whereas in vertebrate dendrites, their orientations are locally mixed. Molecular motors are known to be responsible for cytoskeletal ordering and force generation, but their collective function in the dense MT cytoskeleton of neurites remains elusive. We here hypothesized that both the polarity pattern of MTs along the neurite shaft and the shaft’s global extension are simultaneously driven by molecular motor forces and should thus be regulated by the mechanical load acting on the MT array as a whole. To investigate this, we simulated cylindrical bundles of MTs that are cross-linked and powered by molecular motors by iteratively solving a set of force-balance equations. The bundles were subjected to a fixed load arising from actively generated tension in the actomyosin cortex enveloping the MTs. The magnitude of the load and the level of motor-induced connectivity between the MTs have been varied systematically. With an increasing load and decreasing motor-induced connectivity between MTs, the bundles became wider in cross section and extended more slowly, and the local MT orientational order was reduced. These results reveal two, to our knowledge, novel mechanical factors that may underlie the distinctive development of the MT cytoskeleton in axons and dendrites: the cross-linking level of MTs by motors and the load acting on this cytoskeleton during growth.  相似文献   

17.
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.  相似文献   

18.
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.  相似文献   

19.
Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.  相似文献   

20.
对花粉管中的微丝和微管研究的几个问题的进展进行了综述, 包括微丝和微管在花粉管中的分布;微丝和微管在花粉管胞质流动、细胞器运动以及花粉管生长中的作用等几个方面。并对今后这些方面研究的重要问题进行了论述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号