首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The following labeled compounds were isolated and identified after incubation of [1-14C]arachidonic acid with guinea pig lung homogenates: 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT), the hemiacetal derivative of 8-(1-hydroxy-3-oxopropyl)-9,12-dihydroxy-5,10-heptadecadienoic acid (PHD), 12-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE), PGE2, PGF, 11-hydroxy-5,8,12,14-eicosatetraenoic acid, and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (in order of decreasing yield). Perfused guinea pig lungs released PHD (654–2304 ng), HHT (192–387 ng), HETE (66–111 ng), PGE2 (15–93 ng), and PGF (93–171 ng) following injection of 30 μg of arachidonic acid. Thus guinea pig lung homogenates as well as intact guinea pig lung converted added arachidonic acid predominantly into PHD and HHT, metabolites of the prostaglandin endoperoxide PGG2, and to a lesser extent into the classical prostaglandins PGE2 and PGF.  相似文献   

2.
Particulate fractions and slices from fetal calf aorta convert arachidonic acid to 6-oxoprostaglandin F1 alpha (6-oxoPGF1 alpha), 6,15-dioxoPGF1 alpha, 12-hydroxy-5,8,10-heptadecatrienoic acid, 11-hydroxy-5,8,12,14-icosatetraenoic acid (11h-20:4), and 15-hydroxy-5,8,11,13-icosatetraenoic acid (15h-20:4). In some cases, small amounts of 12-hydroxy-5,8,10,14-icosatetraenoic acid (12h-20:4) were also detected. The products were all identified by gas chromatography-mass spectrometry after purification by normal phase and argentation high pressure liquid chromatography. Both 11h-20:4 and 15h-20:4 appeared to be formed by prostaglandin endoperoxide synthetase rather than by lipoxygenases, since their formation was inhibited by indomethacin but not by nordihydroguaiaretic acid. The formation of 12h-20:4, on the other hand, was stimulated by indomethacin, probably due to increased substrate availability. The formation of hydroxyicosatetraenoic acids was markedly stimulated by adrenaline. Substantial amounts of 6,15-dioxoPGF1 alpha were formed from arachidonic acid by particulate fractions from fetal calf blood vessels, especially in the presence of relatively high substrate concentrations. The formation of this product was stimulated by methemoglobin and inhibited by adrenaline, glutathione, and tryptophan. It would appear that particulate fractions from fetal calf aorta convert arachidonic acid to 15-hydroperoxyPGI2, which can either be reduced in the presence of various cofactors to form PGI2 or dehydrated to give 15-oxoPGI2. The formation of hydroperoxides from arachidonic acid could be an important factor in regulating PGI2 synthesis in aorta, since PGI2 synthetase is strongly inhibited by such intermediates.  相似文献   

3.
Arachidonic acid is the precursor of several potent derivatives that regulate physiological functions in the cardiovascular system. Thromboxane (TXA2) and prostacyclin (PGI2) are synthesized by the cyclooxygenase enzyme. The proaggregatory and vasoconstrictive TXA2 produced by platelets is opposed in vivo by the antiaggregatory and vasodilating activity of PGI2 synthesized by blood vessels. Arachidonic acid is also converted via a 5-lipoxygenase to leukotrienes, the vasoconstrictive components of SRSA. We have shown that this latter pathway is regulated by 15-HETE, a product of the 15-lipoxygenase present in lymphocytes. Confluent cultures of rat aorta smooth muscle cells (RSM) were superfused briefly with [14C]arachidonic acid. The products were isolated and analyzed by thin-layer chromatography-radioautography, high performance liquid chromatography, and gas-liquid chromatography-mass spectrometry. Prostacyclin (PGI2) was identified as the major product both by its biological properties in a platelet aggregation assay and by the mass spectrum of its tetra-trimethylsilylether-methyl ester derivative. Minor quantities of PGE2, PGD2, and PGF2 alpha were also synthesized. Three other compounds with chromatographic properties of mono-hydroxy eicosanoic acids were also formed in major amounts. These were shown to be cyclooxygenase products since their synthesis, together with that of prostacyclin, was blocked by the cyclooxygenase inhibitors aspirin (0.2 mM) and indomethacin (10 microM). Quantities of the hydroxy-eicosanoids were isolated from large scale incubations by silicic acid chromatography. Following methylation and reduction with platinum oxide/H2, the compounds were converted to their trimethylsilylether derivatives and analyzed by gas-liquid chromatography-mass spectrometry. The compounds were identified as 11-hydroxy-5,8,12,14-eicosatetraenoic acid (11-HETE), 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), and hydroxy-5,8,10-heptadeca-trienoic acid (HHT) by simultaneous ion monitoring of characteristic ions at M/e ratios of 287, 258, 229 for 11-HETE and 343, 314, 173 for 15-HETE, and by comparison with the mass spectra of authentic samples. Rat smooth muscle cells, prelabeled by 24-hour incubation with [14C]arachidonic acid, released large amounts of prostacyclin together with enhanced amounts of 11- and 15-HETE in response to physiological levels of thrombin (0.5-5 units/ml). These experiments demonstrate that, in addition to the thromboxane antagonist prostacyclin, vascular smooth muscle cells produce significant quantities of the leukotriene inhibitor 15-HETE via the cyclooxygenase pathway in response to physiological stimuli such as thrombin. The release of both prostacyclin and 15-HETE by vascular smooth muscle cells may thus play an important role in vascular homeostasis.  相似文献   

4.
5-oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A(4) (LTA(4)) in addition to 5,12-dihydroxy-(6E,8E,10E, 14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E, 11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA(4) was found to be pH-dependent. After incubation of LTA(4) in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA(4) in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC(50) of 250 nM, as compared to values of 3.5 nM for leukotriene B(4) (LTB(4)500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB(4) totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB(4). The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB(4) receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB(4) receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z, 14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB(4).  相似文献   

5.
A whole organ or a homogenate of rat pineal gland was incubated with arachidonic Acid. Two predominant metabolites were identified by mass spectrometry to be 12-hydroxy-5,8,10,14-eicosatetraenoic acid and 10-hydroxy-11,,12-epoxy-5,8,14-eiconsatrienoic acid. 15-Hydroxy-5,8,11,13-eicosatetraenoic acid was also formed in a smaller amount. In addition, peroxy acids appeared rapidly only at the initial state of reaction. In various parts of rat brain the 12-lipoxygenase activity was by far the highest in pineal gland, and less than 5% of the activity was found in pituitary gland and hypothalamus.  相似文献   

6.
The metabolism of arachidonic and linoleic acids by VX2 carcinoma tissue was determined. Prostaglandin E2 was the major metabolic product of arachidonic acid in the neoplastic tissue. Minor products accounting for 3– 8% of arachidonic acid metabolism were 11-hydroxy-5, 8, 12, 14-eicosatetraenoic acid (11-HETE) and 15-hydroxy-5, 8, 11, 13-eicosatetraenoic acid (15-HETE). Linoleic acid was converted to a mixture of 9-hydroxy-10, 12-octadecadienoic acid (9-HODD) and 13-hydroxy-9, 11-octadecadienoic acid (13-HODD). The conversion of linoleic acid to monohydroxy C-18 fatty acids varied from 40–80% 9-HODD and 20–60% 13-HODD in tumor tissue harvested from different animals. The quantity of monohydroxy C-18 fatty acids biosynthesized by VX2 carcinoma tissue from endogenous linoleic acid equals or exceeds that of prostaglandin E2 biosynthesis from endogenous arachidonic acid. The presence of a hydroxyl group adjacent to a conjugated diene suggest that the monohydroxy C-18 and monohydroxy C-20 fatty acids were formed via the action of lipoxygenase-like enzymes. These lipoxygenase-like reactions are inhibited by indomethacin in a concentration-dependent fashion similar to the inhibition of prostaglandin E2 biosynthesis. The enzymes catalyzing the lipoxygenase-like reactions of linoleic and arachidonic acids are localized in the microsomal fraction of VX2 carcinoma tissue. These data suggest that the lipoxygenase-like reactions are catalyzed by fatty acid cyclooxygenase and that there are two major pathways of fatty acid cyclooxygenase metabolism of polyenoic fatty acids in the neoplastic tissue. One pathway involves the formation of prostaglandin E2 via cyclic endoperoxy intermediates. The second pathway involves the formation of monohydroxy C-18 fatty acids from linoleic acid via lipoxygenase-like reactions.  相似文献   

7.
An enantiospecific route for the synthesis of 11,12-dihydroxyeicosatetraenoic acids was developed and used to synthesize 11,12-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acids. The 11,12-DHETEs were synthesized with the stereochemistry of the hydroxyl group being 11(R),12(S) and 11(S),12(S). The synthetic compounds were used to elucidate the structure of 11,12-DHETEs formed in human platelets by comparison of the chromatographic retention time in HPLC and GC as well as their ion fragmentation pattern in GC-MS. The major 11,12-DHETE formed in human platelets was found to be identical with 11(R),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid. Two more compounds were tentatively identified as 11(S),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid and 11,12-dihydroxy-5(E),7(E),9(E),14(Z)-eicosatetraenoic acid. Furthermore, the 11(S),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid was found to possess biological activity on neutrophil functional responses. However, the major compound, 11(R),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid, formed in platelets lacks biological activity in the test systems used. The present data further support that 11,12-dihydroxy-eicosatetraenoic acids are formed in human platelets via a leukotriene like mechanism presumably by the 12-lipoxygenase. Furthermore, the biological effects of one of the compounds showed a unique activity profile compared to other lipoxygenase products.  相似文献   

8.
Glucose (16.7 mM)-induced insulin secretion from isolated pancreatic islets of rats was inhibited by nordihydroguaiaretic acid (NDGA), 1-phenyl-3-pyrazolidinone (phenidone), 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline (BW755C), 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), and 2,6-di-tert-butyl-4-methylphenol (BHT). Indomethacin and aspirin, however, failed to inhibit the glucose-induced insulin secretion but rather tended to enhance it. The glucose-induced insulin secretion was inhibited by 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) (50 microM), 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) (100 microM), and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) (100 microM), but not by 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) (100 microM). Exogenous 5-HETE (10 microM) induced significant insulin secretion in a low glucose (3.3 mM) medium. Racemic 5-HETE also showed insulinotropic effect in a concentration-dependent manner with the concentrations 20 microM or above, whereas 12-HETE, 15-HETE, 15-HPETE, 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid, 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid, 5-hydroxy-6-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2 alpha failed to induce insulin secretion. Although significant insulin release was observed with arachidonic acid (greater than or equal to 100 microM), reduce cell viability was evident at 200 microM. When the 10,000 X g supernatant of isolated pancreatic islet homogenate was incubated with [3H]arachidonic acid at 37 degrees C in the presence of GSH and Ca2+, and the labeled metabolites then extracted with ethyl acetate and subjected to reverse phase high pressure liquid chromatography, several radioactive peaks, coeluted with authentic 15-, 12-, and 5-HETE, were observed. The radioactive peaks were completely suppressed by the addition of either NDGA, BW755C, or phenidone into the medium. The results support our contention i.e. the involvement of lipoxygenase product(s) in the secretory mechanism of insulin, and further suggest that 5-lipoxygenase system may play a role.  相似文献   

9.
Minced rabbit pericardium actively converts [1-14C]arachidonic acid into the known prostaglandins (6-[1-14C]ketoprostaglandin F1 alpha, [1-14C]prostaglandin E2 and [1-14C]prostaglandin F2 alpha) and into several unidentified metabolites. The major metabolite was separated by C18 reverse-phase high-pressure liquid chromatography (HPLC) and identified by gas chromatography-mass spectrometry (GC-MS) to be 6,15-[1-14C]diketo-13,14-dihydroprostaglandin F1 alpha. The other nonpolar metabolites were 15-[1-14C]hydroxy-5,8,11,13-eicosa-tetraenoic acid (15-HETE), 11-[1-14C]hydroxy-5,8,12,14-eicosatetraenoic acid (11-HETE) and 12-[1-14C]hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE). Arachidonic acid metabolites actively produced by the pericardium could influence the tone of surface blood vessels on the myocardium.  相似文献   

10.
The lipoxygenase from reticulocytes oxygenates 15LS-HETE to 8-hydroperoxy-15-hydroxy-5,9,11,13-eicosatetraenoic acid and 5-hydroperoxy-15-hydroxy-6,8,11,13-eicosatetraenoic acid only in the presence of catalytic concentrations of monohydroperoxy fatty acids. During this reaction the hydroperoxy fatty acids are converted to more polar products including hydroxy fatty acids. From kinetic measurements of 15LS-HETE oxygenation it was calculated that 1 mol monohydroperoxy fatty acid is consumed during the oxygenation of about 9 mol 15LS-HETE.  相似文献   

11.
Human platelets incubated in the presence of 54 microM [1-14C]22:6 produced hydroxydocosahexaenoic acid (HDHE) at about half the rate with which 12-hydroxy-5,8,10,14-eicosatetraenoic acid is produced from [1-14C]arachidonic acid. More than 90% of the radioactivity in HDHE was distributed among two major isomers, 14-HDHE and 11-HDHE. The production of HDHEs was unaffected by indomethacin but completely inhibited by 5,8,11,14-heneicosatetraynoic acid, which suggests that the hydroxy fatty acids are produced by lipoxygenase. The proportions of HDHE isomers varied with the concentration of 22:6. The ratio 14-HDHE/11-HDHE was higher at 6.8 microM 22:6 than when platelets were incubated with 54 microM 22:6. It is suggested that the amounts of these isomers produced will depend both on the availability of 22:6 as well as by competition of this acid with other acids for lipoxygenase.  相似文献   

12.
Recent work has shown that oocytes of the starfish synthesize (8R)-hydroxyeicosatetraenoic acid and that this eicosanoid has a potent and highly specific action in induction of oocyte maturation. These striking results prompted us to examine the lipoxygenase activity of eggs of the sea urchin Strongylocentrotus purpuratus. Four hydroxyeicosanoids were formed in homogenates of sea urchin eggs; their structures and stereochemistry were characterized by high pressure liquid chromatography, UV spectroscopy, and gas chromatography-mass spectrometry. The compounds were identified as (11R)-hydroxy-5,8,12,14-ZZEZ-eicosatetraenoic acid and (12R)-hydroxy-5,8,10,14-ZZEZ-eicosatetraenoic acid (from arachidonic acid) and the corresponding (11R)- and (12R)-hydroxy analogs of eicosapentaenoic acid. The formation of these egg products was not blocked by a cyclooxygenase inhibitor, indomethacin (10 microM), and their precise structures are consistent with their formation by a lipoxygenase reaction. Eicosapentaenoic acids with a prochiral tritium label in the 10-D or 10-L position were used to investigate the mechanism of biosynthesis. The formation of (12R)-hydroxyeicosapentaenoic acid proceeded with the stereoselective abstraction of the 10-D hydrogen from the substrate. This reaction was shown to be opposite to the (12S) oxygenation catalyzed by porcine leukocyte 12-lipoxygenase. These results with S. purpuratus eggs constitute the first demonstration of (11R)- or (12R)-lipoxygenase activity in any cell type or tissue.  相似文献   

13.
Leukotriene E4 was incubated with cysteine-conjugate beta-lyase isolated from the intestinal bacterium Eubacterium limosum. The reaction was terminated by addition of iodoacetic acid or dimethyl sulfate, and the products formed were isolated by reverse-phase high-performance liquid chromatography. The structures of two adducts of a metabolite were determined by uv spectroscopy, by gas-liquid radiochromatography, and by comparisons with chemically synthesized reference compounds. They were 5-hydroxy-6-S-carboxymethylthio-7,9-trans-11,14-cis-eicosatetraeno ic acid (iodoacetic acid adduct) and 5-hydroxy-6-S-methylthio-7,9-trans-11,14-cis-eicosatetraenoic acid (dimethyl sulfate adduct) indicating that the structure of the underivatized metabolite was 5-hydroxy-6-mercapto-7,9,11,14-eicosatetraenoic acid (5,6-HMETE). The latter product is formed by beta-lyase-catalyzed cleavage of the cysteine C-S bond in leukotriene E4. Leukotriene E4 was also metabolized to 5,6-HMETE by rat cecal contents. A product formed was trapped as the iodoacetic acid derivative and identified as 5-hydroxy-6-S-carboxy-methylthio-7,9,11,14-eicosatetraenoic acid. It is concluded that intestinal leukotriene E4, originating from biliary excretion of systemic cysteinyl leukotrienes or produced in the intestine, is converted by microfloral cysteine-conjugate beta-lyase to 5,6-HMETE.  相似文献   

14.
Human platelets metabolize 7,10,13,16-docosatetraenoic acid (22:4(n - 6)) into dihomo-thromboxane B2 and 14-hydroxy-7,10,12-nonadecatrienoic acid at about twenty percent of the rate they convert arachidonic acid to thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid. 14-Hydroxy-7,10,12,16-docosatetraenoic was the major metabolite produce via the lipoxygenase pathway. Several other hydroxy acids were also produced in small amounts via an indomethacin-insensitive pathway. Incubation of 20 microM arachidonic acid with various levels of 22:4(n - 6) resulted in a dose-dependent inhibition of both thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid production. Conversely, 12-hydroxy-5,8,10,14-eicosatetraenoic acid synthesis was stimulated because of substrate shunting to the lipoxygenase pathway. These results show that 22:4(n - 6) may modify platelet function both by serving as a precursor for a 22-carbon thromboxane and by suppressing the synthesis of thromboxane A2 from arachidonic acid. In addition, our results suggest that simultaneous release of 22:4(n - 6) and arachidonic acid from platelet phospholipids will result in an elevation of both 12-hydroxy-5,8,10,14-eicosatetraenoic acid levels as well as simultaneous synthesis of 14-hydroxy-7,10,12,16-docosatetraenoic acid.  相似文献   

15.
The lipid extract of the temperate red alga Rhodymenia pertusa has yielded four eicosanoid metabolites, three of which are new natural products. Using principally NMR and MS techniques, their structures were deduced as 5R,6S-dihydroxy-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid (5R,6S-diHETE), 5R*,6S*-dihydroxy-7(E),9(E),11(Z),14(Z),17(Z)-eicosapentaenoic acid (5R*,6S*-diHEPE), 5-hydroxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid (5-HETE), 5-hydroxy-6(E),8(Z),11(Z),14(Z),17(Z)-eicosapentaenoic acid (5-HEPE). The co-occurrence of these metabolites strongly suggests that R. pertusa contains a unique 5R-lipoxygenase system acting on both arachidonic and eicosapentaenoic acids.  相似文献   

16.
The sensitivity of the 5-lipoxygenase to inhibition by 5,8,11,14-eicosatetraynoic acid (ETYA) is species- and/or tissue-dependent. Guinea pig peritoneal polymorphonuclear leukocytes prelabeled with [3H]arachidonic acid and stimulated with ionophore A23187 formed 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), as well as several dihydroxy fatty acids, including 5(S),12(R)-dihydroxy-6,8,10-(cis/trans/trans)-14-(cis)-eicosatetraenoic acid. ETYA (40 microM) did not inhibit, but, rather, increased the incorporation of 3H label into 5-HETE. In contrast, ETYA markedly inhibited the formation of radiolabeled dihydroxy acid metabolites by the A23187-stimulated cells. Assay of products from polymorphonuclear leukocytes incubated with exogenous arachidonic acid plus A23187, by reverse phase high performance liquid chromatography combined with ultraviolet absorption, showed a concentration-dependent inhibition of the formation of dihydroxy acid metabolite by ETYA (1-50 microM) and an increase in 5-HETE levels (maximum of 2- to 3-fold). The latter finding was verified by stable isotope dilution assay with deuterated 5-HETE as the internal standard. Another lipoxygenase inhibitor, nordihydroguaiaretic acid, potently inhibited the formation of both 5-HETE and dihydroxy acids, with an IC50 of 2 microM. The data suggest that ETYA can inhibit the enzymatic step whereby 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid is converted to leukotriene A4 in guinea pig polymorphonuclear leukocytes.  相似文献   

17.
12- and 15-lipoxygenases in rat pineal gland   总被引:5,自引:0,他引:5  
A whole organ or a homogenate of rat pineal gland was incubated with arachidonic Acid. Two predominant metabolites were identified by mass spectrometry to be 12-hydroxy-5,8,10,14-eicosatetraenoic acid and 10-hydroxy-11,12-epoxy-5,8,14-eicosatrienoic acid. 15-Hydroxy-5,8,11,13-eicosatetraenoic acid was also formed in a smaller amount. In addition, peroxy acids appeared rapidly only at the initial stage of reaction. In various parts of rat brain the 12-lipoxygenase activity was by far the highest in pineal gland, and less than 5% of the activity was found in pituitary gland and hypothalamus.  相似文献   

18.
Human platelets metabolize 8,11,14,17-eicosatetraenoic acid primarily into 12-hydroxy-8,10,14,17-eicosatetraenoic acid. Several other hydroxy acids were also produced in small amounts via an indomethacin insensitive pathway. Platelet cyclooxygenase metabolized this acid only into 12-hydroxy-8,10,14-heptadecatrienoic acid. It was not possible to detect any cyclic products even though vesicular gland cyclooxygenase metabolizes this (n-3) acid to 17,18-dehydroprostaglandin E1 (Oliw, E.H., Sprecher, H. and Hamberg, M. (1986) J. Biol. Chem. 261, 2675-2683).  相似文献   

19.
Lipoxygenase metabolites of guinea pig peritoneal polymorphonuclear leukocytes stimulated with 10 microM A23187 plus arachidonic acid were isolated and identified. These metabolites were compared with each other and to chemically synthesized arachidonate metabolites for their ability to stimulate leukocyte degranulation. 5(S),12(R)-Dihydroxy-6,8,10-(cis/trans/trans)14-cis-eicosatetraenoic acid (leukotriene B4) produced a significant release of lysozyme, but not beta-glucuronidase or beta-N-acetylglucosaminidase at low concentrations (EC50 = 6.5 x 10(-9) M), while the leukocyte nonenzymatically generated 5,12-or 5,6-dihydroxyeicosatetraenoic acids had no effect at these concentrations. Higher concentrations (1--10 microM) of all the dihydroxyeicosatetraenoic acids, 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) and its hydroperoxy precursor stimulated significant lysozyme release which was greater than that produced by 15-hydroxy-5,8,11-13-eicosatetraenoic acid, arachidonic acid, or its acetylene analogue, 5,8,11,14-eicosatetraynoic acid. Micromolar concentrations of leukotriene B4 and 5-HETE also stimulated significant release of beta-N-acetylglucosaminidase above controls, but not beta-glucuronidase. These results suggest that leukotriene B4 may play a role in regulating the release of certain granule-bound enzymes from polymorphonuclear leukocytes.  相似文献   

20.
15(S)-Hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) was by far the most abundant metabolite of arachidonic acid in chopped human bronchi, as identified by reverse phase HPLC, uv spectrometry, and GC/MS. The quantitation of monohydroxyeicosatetraenoic acids (mono-HETEs) was performed by the use of 16(S)-hydroxy-9(Z),12(Z),14(E)-heneicosatrienoic acid as internal standard. Thus, significant amounts of 15-HETE were obtained in incubations of bronchi in buffer alone, but the addition of exogenous arachidonic acid (3-100 microM), dose-dependently increased the formation, with maximal levels reached at around 10 min. In contrast, challenge with ionophore A23187 or anti-human IgE did not stimulate the production of 15-HETE in the bronchi. Nordihydroguaiaretic acid inhibited the production of 15-HETE, whereas indomethacin did not. Small amounts of 8,15-diHETEs were detected in incubations with exogenous 15H(P)ETE. Lipoxins were however not detected under any of the incubation conditions used. Furthermore, removal of the airway epithelium substantially diminished the production of 15-HETE in the bronchi. Finally, bronchi were obtained from three patients with asthma, and the amounts of 15-HETE in these specimens were significantly higher than those found in tissues from nonasthmatics. Also, in peripheral lung parenchyma and pulmonary blood vessels 15-HETE was the major mono-HETE after stimulation with arachidonic acid but the levels were about 10 times lower than in the bronchi. As another difference, challenge of the parenchyma with the ionophore A23187 made 5-HETE the predominant mono-HETE. Taken together, airway epithelium appears to be the major source of 15-HETE in the human lung and the findings in specimens of asthmatics raise the possibility that 15-HETE somehow is involved in airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号