首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protoplasts and intact chloroplasts isolated from Agropyron smithii Rybd. were utilized in an effort to determine the limiting factor(s) for photosynthesis at supraoptimal temperatures. Saturated CO2-dependent O2 evolution had a temperature optimum of 35°C for both protoplasts and intact chloroplasts. A sharp decline in activity was observed as assay temperature was increased above 35°C, and at 45°C only 20% of the maximal rate remained. The temperature optimum for 3-phosphoglycerate reduction by intact chloroplasts was 35°C. Above this temperature, 3-phosphoglycerate reduction was more stable than CO2-dependent O2 evolution. Reduction of nitrite in coupled intact chloroplasts had a temperature optimum of 40°C with only slight variation in activity between 35°C and 45°C. Reduction of nitrite in uncoupled chloroplasts had a temperature optimum of 40°C, but increasing the assay temperature to 45°C resulted in a complete loss of activity. Reduction of p-benzoquinone by protoplasts and intact chloroplasts had a temperature optimum of 32°C when measured in the presence of dibromothymoquinone. This photosystem II activity exhibited a strong inhibition of O2 evolution as assay temperature increased above the optimum. It is concluded that, below the temperature optimum, ATP and reductant were not limiting photosynthesis in these systems or intact leaves. Above the temperature optimum, photosynthesis in these systems is limited in part by the phosphorylation potential of the stromal compartment and not by the available reductant.  相似文献   

3.
As part of an analysis of the factors regulating photosynthesis in Agropyron smithii Rydb., a C3 grass, the response of electron transport and photophosphorylation to temperature in isolated chloroplast thylakoids has been examined. The response of the light reactions to temperature was found to depend strongly on the preincubation time especially at temperatures above 35°C. Using methyl viologen as a noncyclic electron acceptor, coupled electron transport was found to be stable to 38°C; however, uncoupled electron transport was inhibited above 38°C. Photophosphorylation became unstable at lower temperatures, becoming progressively inhibited from 35 to 42°C. The coupling ratio, ATP/2e, decreased continuously with temperature above 35°C. Likewise, photosystem I electron transport was stable up to 48°C, while cyclic photophosphorylation became inhibited above 35°C. Net proton uptake was found to decrease with temperatures above 35°C supporting the hypothesis that high temperature produces thermal uncoupling in these chloroplast thylakoids. Previously determined limitations of net photosynthesis in whole leaves in the temperature region from 35 to 40°C may be due to thermal uncoupling that limits ATP and/or changes the stromal environment required for photosynthetic carbon reduction. Previously determined limitations to photosynthesis in whole leaves above 40°C correlate with inhibition of photosynthetic electron transport at photosystem II along with the cessation of photophosphorylation.  相似文献   

4.
Ku SB  Edwards GE 《Plant physiology》1977,59(5):986-990
The magnitude of the percentage inhibition of photosynthesis by atmospheric levels of O2 in the C3 species Solanum tuberosum L., Medicago sativa L., Phaseolus vulgaris L., Glycine max L., and Triticum aestivum L. increases in a similar manner with an increase in the apparent solubility ratio of O2/CO2 in the leaf over a range of solubility ratios from 25 to 45. The solubility ratio is based on calculated levels of O2 and CO2 in the intercellular spaces of leaves as derived from whole leaf measurements of photosynthesis and transpiration. The solubility ratio of O2/CO2 can be increased by increased leaf temperature under constant atmospheric levels of O2 and CO2 (since O2 is relatively more soluble than CO2 with increasing temperature); by increasing the relative levels of O2/CO2 in the atmosphere at a given leaf temperature, or by increased stomatal resistance. If the solubility ratio of O2/CO2 is kept constant, as leaf temperature is increased, by varying the levels of O2 or CO2 in the atmosphere, then the percentage inhibition of photosynthesis by O2 is similar. The decreased solubility of CO2 relative to O2 (decreased CO2/O2 ratio) may be partly responsible for the increased percentage inhibition of photosynthesis by O2 under atmospheric conditions with increasing temperature.  相似文献   

5.
Glycogen granules were isolated from the photosynthesizing cellsof purple sulfur bacterium, Chromatium strain D, and the chemicalstructure was studied by enzymic hydrolysis using -and ß-amylasesand pullulanase. The end-group assay of the bacterial glycogenby periodate oxidation gave the following analytical data: (average chain length), 11; ICL (interiorchain length), 3; and ECL (exterior chain length), 7. We concludethat the Chromatium glycogen is a glycogen- and amylopectin-type-glucan. Intracellular accumulation of glycogen granules inthe bacterial cells harvested at different growth stages wasexamined by electron microscope observation. 1This research was supported in part by a research grant fromthe Ministry of Education of Japan (No. 758036). (Received February 9, 1973; )  相似文献   

6.
Fluorescent emission kinetics of isolated spinach chloroplasts have been observed at room temperature with an instrument resolution time of 10 ps using a frequency doubled, mode-locked Nd:glass laser and an optical Kerr gate. At 685 nm two maxima are apparent in the time dependency of the fluorescence; the first occurs at 15 ps and the second at 90 ps after the flash. The intervening minimum occurs at about 50 ps. On the basis of theoretical models, lifetimes of the components associated with the two peaks and spectra (in escarole chloroplasts), the fluorescence associated with the first peak is interpreted as originating from Photosystem I (PSI) (risetime ≤10 ps, lifetime ≤10 ps) and the second peak from Photosystem II (PSII) (lifetime, 210 ps in spinach chloroplasts and 320 ps in escarole chloroplasts). The fact that there are two fluorescing components with a quantum yield ratio ≤0.048 explains the previous discrepancy between the quantum yield of fluorescence measured in chloroplasts directly and that calculated from the lifetime of PSII. The 90 ps delay in the peak of PSII fluorescence is probably explained by energy transfer between accessory pigments such as carotenoids and Chl a. Energy spillover between PSI and PSII is not apparent during the time of observation. The results of this work support the view that the transfer of excitation energy to the trap complex in both photosystems occurs by means of a molecular excitation mechanism of intermediate coupling strength. Although triplet states are not of major importance in energy transfer to PSII traps, the possibility that they are involved in PSI photochemistry has not been eliminated.  相似文献   

7.
《BBA》1985,807(2):134-142
Chromatophores of the purple sulfur bacterium Chromatium vinosum were shown to contain a cytochrome similar to cytochrome c1 and two b cytochromes. Cytochrome b can be accumulated in the reduced form upon illumination at an ambient redox potential of +415 mV in the presence of the electron transport inhibitors antimycin A or HOQNO. The reductions of cytochrome b, of the high-potential cytochrome c555 and of the primary electron donor P-870 are all inhibited by myxothiazol. Dark-adapted C. vinosum chromatophores show little cytochrome b reduction on the first flash. Considerable cytochrome b reduction (1 cytochrome b:8 P-870 present) is observed on the second flash. This observation and the 1:1 stoichiometry observed between cytochrome b reduction and P-870+ reduction after the second flash support a Q-cycle model for cyclic electron flow in C. vinosum.  相似文献   

8.
P-700, plastocyanin and cytochrome f redox kinetics were measured after one flash, using dark-adapted Chlorella in the presence of hydroxylamine and 3(3,4-dichlorophenyl)-1,1-dimethylurea. Plastocyanin becomes increasingly oxidized with a half-time of 70 μs, then undergoes reduction with a half-time of 7 ms. Cytochrome f oxidation has a sigmoidal time-course and a half-time of 100 μs. Its reduction exhibits a half-time of 4 ms. These results are interpreted in a linear scheme:
An equilibrium constant of 2 between cytochrome f and plastocyanin (PC), which contrasts with the large equilibrium constant between PC and P-700 is computed.The presence of cytochrome b6 in a cyclic path around Photosystem I is confirmed under these conditions.  相似文献   

9.
The pulsed mode of a negative corona discharge in air has long been known; however, in electropositive gases, this mode has not been previously observed. This paper presents the results from a systematic study of a newly discovered pulsed mode of a negative corona in nitrogen over a wide range of experimental parameters. The conditions under which the pulsed mode is realized are described in detail. The dynamic characteristics of current pulses are determined. The shapes and parameters of current pulses in nitrogen and air are compared.  相似文献   

10.
Stitt M 《Plant physiology》1986,81(4):1115-1122
It has been investigated how far electron transport or carbon metabolism limit the maximal rates of photosynthesis achieved by spinach leaves in saturating light and CO2. Leaf discs were illuminated with high light until a steady state rate of O2 evolution was attained, and then subjected to a 30 second interruption in low light, to generate an increased demand for the products of electron transport. Upon returning to high light there is a temporary enhancement of photosynthesis which lasts 15 to 30 seconds, and can be up to 50% above the steady state rate of O2 evolution. This temporary enhancement is only found when saturating light intensities are used for the steady state illumination, is increased when low light rather than darkness is used during the interruption, and is maximal following a 30 to 60 seconds interruption in low light. Decreasing the temperature over the 10 to 30°C range led to the transient enhancement becoming larger. The temporary enhancement is associated with an increased ATP/ADP ratio, a decreased level of 3-phosphoglycerate, and increased levels of triose phosphate and ribulose 1,5-bisphosphate. Since electron transport can occur at higher rates than in steady state conditions, and generate a higher energy status, it is concluded that leaves have a surplus electron transport capacity in saturating light and CO2. From the alterations of metabolites, it can be calculated that the enhanced O2 evolution must be accompanied by an increased rate of ribulose 1,5-bisphosphate regeneration and carboxylation. It is suggested that the capacity for sucrose synthesis ultimately limits the maximal rates of photosynthesis, by restricting the rate at which inorganic phosphate can be recycled to support electron transport and carbon fixation in the chloroplast.  相似文献   

11.
12.
13.
W. L. Hardy 《Biophysical journal》1973,13(10):1054-1070
Conduction speed (θ) in single myelinated Rana pipiens sciatic nerve fibers has been precisely measured using intracellular recording and on-line digital computer techniques. The dependence of relative speed on external Na concentration at 15°C has been found to be ln(θ12) = 0.524 (±0.018) ln ([Na+]1/[Na+]2) + 0.003. Thus θ has very close to a square root dependence on [Na+]0 for these fibers. This experimental finding is not in complete agreement with a theoretical prediction based on a solution of the Hodgkin-Huxley (H.H.) equations. The effect of small temperature variations around 15°C on θ has also been measured for Rana fibers in Ringer's solution. θ has close to an exponential dependence on T and a Q10 of 2.95 has been estimated.  相似文献   

14.
Pastenes C  Horton P 《Plant physiology》1996,112(3):1245-1251
We studied the effect of increasing temperature on photosynthesis in two bean (Phaseolus vulgaris L.) varieties known to differ in their resistance to extreme high temperatures, Blue Lake (BL), commercially available in the United Kingdom, and Barbucho (BA), noncommercially bred in Chile. We paid particular attention to the energy-transducing mechanisms and structural responses inferred from fluorescence kinetics. The study was conducted in non-photorespiratory conditions. Increases in temperature resulted in changes in the fluorescence parameters nonphotochemical quenching (qN) and photochemical quenching (qP) in both varieties, but to a different extent. In BL and BA the increase in qP and the decrease in qN were either completed at 30[deg]C or slightly changed following increases from 30 to 35[deg]C. No indication of photoinhibition was detected at any temperature, and the ratio of the quantum efficiencies of photosystem II (PSII) and O2 evolution remained constant from 20 to 35[deg]C. Measurements of 77-K fluorescence showed an increase in the photosystem I (PSI)/PSII ratio with temperature, suggesting an increase in the state transitions. In addition, measurements of fast-induction fluorescence revealed that the proportion of PSII[beta] centers increased with increasing temperatures. The extent of both changes were maximum at 30 to 35[deg]C, coinciding with the ratio of rates at temperatures differing by 10[deg]C for oxygen evolution.  相似文献   

15.
16.
We report Molecular Dynamics calculations of radial density profiles and self-diffusion coefficients of Lennard-Jones fluids in a cylindrical pore of radius 2σ, for a wide range of temperatures and densities. At n p σ3 = 0.825 the self-diffusion coefficient parallel to the pore walls D *. follows a monotonic (nearly linear) increase with kT/ε and is very similar to that of the bulk self-diffusion coefficient D b *. At n p σ3 = 0.4 and kT/ε ≤ 1.0 the curve of D * vs. kT/ε shows a distinct inflection in the region 0.7 ≤ kT/ε ≤ 0.9 and values of D * are much less than D b * decreasing to near solid state values at very low temperatures. At the highest temperature studied, kT/ε = 2.98, D * is almost inversely proportional to density and in a fairly close agreement with that of D b *. At KT/ε = 0.49, D * is much smaller than D b *. The motion of adsorbate particles normal to the walls is also discussed.  相似文献   

17.
Evidence for a repeating domain in type I restriction enzymes.   总被引:19,自引:10,他引:9       下载免费PDF全文
P Argos 《The EMBO journal》1985,4(5):1351-1355
The primary structures of the recognition subunit (hsdS) in type I restriction enzymes from three isolates of Escherichia coli were compared and aligned by use of amino acid physical properties. A repeating domain was found in each of the subunits suggesting a pseudo-dimeric structure. Secondary structure predictions delineated two helical regions in each domain which suggested that the recognition subunits may act in a fashion similar to that proposed for repressor and activator molecules; namely, interaction with double-stranded DNA through helices and in two successive major grooves on the same DNA side. One helical motif could provide the specific recognition site and the other, the restriction site.  相似文献   

18.
19.
The Christchurch wastewater treatment plant uses a series of six oxidation ponds to reduce the bacterial load of treated effluent before it is discharged into the local estuary. To ensure that this discharge does not adversely affect water quality in the receiving environment, local regulations specify maximum levels in the discharge for a number of parameters, including enterococci. Between 2001 and 2006, regulations required fewer than 300 enterococci per 100 ml in summer. During this period, the discharge intermittently exceeded this limit, with unexplained levels of enterococci of up to 180,000/100 ml. Characterization of these enterococci by antibiotic resistance analysis showed that enterococci sampled over 4 months had almost identical resistance profiles. In contrast, enterococci from raw sewage and wildfowl from around the oxidation ponds had a diverse range of antibiotic resistance profiles that could be distinguished from each other and also from those of enterococci from the discharge. The hypothesis of a clonal nature of the enterococci in the discharge was supported by molecular genotype analysis, suggesting that these bacteria may have replicated in the pond environment rather than being reflective of breakthrough in the sewage treatment process or the result of recent wildfowl inputs to the ponds. This study highlights the usefulness of antibiotic resistance analysis in identifying this phenomenon and is the first report of apparent replication of a specific type of enterococci in an oxidation pond environment.  相似文献   

20.
As part of an extensive analysis of the factors regulating photosynthesis in Agropyron smithii Rydb., a C3 grass, we have examined the response of leaf gas exchange and ribulose-1,5-bisphosphate (RuBP) carboxylase activity to temperature. Emphasis was placed on elucidating the specific processes which regulate the temperature response pattern. The inhibitory effects of above-optimal temperatures on net CO2 uptake were fully reversible up to 40°C. Below 40°C, temperature inhibition was primarily due to O2 inhibition of photosynthesis, which reached a maximum of 65% at 45°C. The response of stomatal conductance to temperature did not appear to have a significant role in determining the overall temperature response of photosynthesis. The intracellular conductance to CO2 increased over the entire experimental temperature range, having a Q10 of 1.2 to 1.4. Increases in the apparent Michaelis constant (Kc) for RuBP carboxylase were observed in both in vitro and in vivo assays. The Q10 values for the maximum velocity (Vmax) of CO2 fixation by RuBP carboxylase in vivo was lower (1.3-1.6) than those calculated from in vitro assays (1.8-2.2). The results suggest that temperature-dependent changes in enzyme capacity may have a role in above-optimum temperature limitations below 40°C. At leaf temperatures above 40°C, decreases in photosynthetic capacity were partially dependent on temperature-induced irreversible reductions in the quantum yield for CO2 uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号