首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We examined the involvement of cAMP-dependent protein kinase (A kinase)2 in the inhibition by cilostamide, a specific inhibitor of the low Km cAMP-phosphodiesterase (PDE), on 9,11-epithio-11,12-methanothromboxane A2 (STA2)-induced platelet aggregation. For comparative purposes, the PGE1 analogue, 17S-20-dimethyl-trans-delta 2-PGE1 (OP-1206) was used. OP-1206 (IC50 = 18 +/- 0.55 nM) and cilostamide (IC50 = 40 +/- 4.5 nM) were both potent inhibitors of the platelet aggregation induced by STA2 (1 microM). OP-1206 and cilostamide dose-dependently inhibited elevations in intracellular free Ca2+ ([Ca2+]i) caused by STA2. OP-1206 caused an almost complete inhibition of Ca2+ mobilization, but cilostamide did not prevent the STA2-induced elevation in [Ca2+]i to the same extent as OP-1206, even at a high concentration (greater than 200 nM). Cilostamide did not increase the cAMP level at concentrations (5-100 nm) which affected STA2-induced aggregation. OP-1206 significantly increased cAMP contents in platelets, and the degree of aggregation inhibition by OP-1206 appears to be related to the size of increase in cAMP. OP-1206 increased phosphorylation of the 50,000 mol. wt vasodilator-stimulated phosphoprotein, at concentrations of 7.9-79 nM, which inhibited aggregation induced by STA2. Cilostamide treatment resulted in a marginal increase in the 50,000 mol. wt phosphorylation at concentrations (10-100 nM) which completely inhibited the STA2-induced aggregation. (8R*, 9S*, 11S*)-(-)-9-Hydroxy-9-n-hexyloxy-8-methyl-2,3,9,10- tetrahydro-8,11-epoxy-1H, 8H, 11H-2, 7b, 11a-triazadibenzo(a,g)-cycloocta(c,d,e)trinden-1-one (KT-5720), a specific inhibitor of A kinase, not only reversed the inhibition by OP-1206 of STA2-induced platelet aggregation, but also inhibited the OP-1206-induced protein phosphorylation. However, the inhibition by cilostamide of STA2-induced aggregation was not prevented by pretreatment with KT-5720. Inhibition of the STA2-induced aggregation by OP-1206 may be associated with cAMP-dependent protein phosphorylation, while cilostamide may have inhibitory effects on STA2-induced platelet activation through mechanisms other than the activation of A kinase.  相似文献   

2.
Conflicting results have been reported regarding the effect of thiopental on aggregation and cytosolic calcium levels in platelets. The present study attempted to clarify these phenomena. Using platelet-rich plasma or washed suspensions, platelet aggregation, thromboxane (TX) B2 formation, arachidonic acid (AA) release, and cytosolic free calcium concentrations ([Ca2+]i) were measured in the presence or absence of thiopental (30-300 microM). Platelet activation was induced by adenosine diphosphate (ADP, 0.5-15 microM), epinephrine (0.1-20 microM) arachidonic acid (0.5-1.5 mM), or (+)-9,11-epithia-11,12-methano-TXA2 (STA2, 30-500 nM). Measurements of primary aggregation were performed in the presence of indomethacin (10 microM). Low concentrations of ADP and epinephrine, which did not induce secondary aggregation in a control study, induced strong secondary aggregation in the presence of thiopental (> or = 100 microM). Thiopental (> or = 100 microM) also increased the TXB2 formation induced by ADP and epinephrine. Thiopental (300 microM) increased ADP- and epinephrine-induced 3H-AA release. Thiopental (300 microM) also augmented the ADP- and epinephrine-induced increases in [Ca2+]i in the presence of indomethacin. Thiopental appears to enhance ADP- and epinephrine-induced secondary platelet aggregation by increasing AA release during primary aggregation, possibly by the activation of phospholipase A2.  相似文献   

3.
The effects of elevated pressures (to 6 atmospheres absolute (ATA)) of nitrous oxide (N2O) and of xenon (Xe), and barbiturates on platelet free cytosolic calcium ([Ca2+]i) and platelet aggregation were studied. N2O inhibited the ADP-induced rise in [Ca2+]i whereas Xe had no effect. Neither affected basal levels. Pentobarbital and methohexital had little effect on basal or stimulated levels in the presence or "absence" of extracellular Ca2+; but both, at concentrations > 10(-4) M, inhibited platelet aggregation induced by adenosine diphosphate. Thiopental increased basal and stimulated [Ca2+]i when extracellular Ca2+ was present, but not when it was absent, and displayed a bimodal effect with low and high doses being more active than intermediate ones. It also potentiated aggregation. Methitural displayed similar, but nonsignificant, effects. These patterns held for all agents whether or not acetylsalicylic acid was present. Pentobarbital and methohexital inhibited phorbol myristate acetate aggregation in low extracellular calcium and no potentiation was seen with thiopental. In the absence of extracellular Ca2+, no potentiation was observed in stimulated platelets. Potentiation of aggregation previously reported for Xe does not involve increased Ca2+ uptake and did not occur in the absence of extracellular Ca2+. A common mechanism of action for these agents cannot be inferred from their effects on platelet aggregation or [Ca2+]i, as their pharmacological profiles differ markedly. It is evident that their inhibitory properties in this cell are not dependent on extracellular Ca2+, whereas the potentiation observed with pentobarbital, and formerly with Xe, is so dependent.  相似文献   

4.
The relationship between Ca2+ influx (delta [Ca2+]i) and the formation of inositol 1,4,5-trisphosphate (IP3) was investigated in human platelets stimulated by various agonists. Both delta [Ca2+]i and IP3 were increased in proportion to the amount of the agonists (thrombin, ADP, PAF, STA2), the receptors of which were demonstrated in platelets, and were correlated with each other. However, the ratio of delta [Ca2+]i to IP3 was significantly varied among agonists. Furthermore, in thrombin stimulated platelets, IP3 was small at low temperature (20 degrees C) compared with that at high temperature (37 degrees C) in spite of the similar delta [Ca2+]i. Thus, Ca2+ influx in human platelets seems to be regulated directly through the receptor operated mechanism and IP3 may not be involved in it.  相似文献   

5.
Previous studies have shown that adenosine agonists acting at A-2 receptors inhibit platelet aggregation. Since an increase in cytosolic Ca2+ concentration (delta [Ca2+]i) is closely associated with the time frame of platelet aggregation, we have examined the effect of adenosine receptor function on induced increases of [Ca2+]i by a potent platelet activator, platelet activating factor (PAF). We loaded washed platelets with Fura-2, then induced increases in [Ca2+]i with various concentrations of PAF, and then determined EC50 values (PAF concentration at half-maximal response) and values for maximal response of delta[Ca2+]i (max-delta[Ca2+]i). The EC50 for PAF-delta[Ca2+]i was 112 +/- 37 (SD) pM and the max-delta[Ca2+]i was 284 +/- 138 (SD) nM. Our results show that PAF-delta[Ca2+]i was inhibited in a non-competitive manner by the adenosine receptor agonist cyclohexyladenosine (CHA) with an IC50 of 14.9 microM. This inhibition was partially reversed by theophylline, an adenosine receptor antagonist, with an IC50 of 19 microM. Based on the results of these studies together with evidence from other research groups that platelets do not possess A-1 receptors, our results suggest that CHA inhibited PAF-delta[Ca2+]i in platelets through an activation of A-2 receptors.  相似文献   

6.
[Ca2+]i increase is necessary in physiological platelet activity, particularly aggregation and release. The increase of [Ca2+]i observed during platelet activation depends in part on Ca2+ influx from the extracellular medium. The participation of voltage-operated Ca2+ channels as a pathway for Ca2+ entry is controversial. In the present study we have attempted to reinvestigate this problem by measuring aggregation and [Ca2+]i changes in platelets activated by ADP or thrombin and incubated with organic or inorganic blockers of calcium channels. The main findings of the present paper can be summarized as follows: (i) Ni2+, Co2+ and Mn2+, well known inorganic blockers of Ca2+ channels, inhibited platelet aggregation induced by ADP or thrombin in a dose-dependent manner, Ni2+ being the most effective agent. (ii) Thrombin induced a rise in free [Ca2+]i in platelets incubated both in 1 mmol/l Ca(2+)-containing medium and in nominally Ca(2+)-free medium; the rise of free [Ca2+]i was in the first case up to 370 +/- 31 nmol/l and in the second case up to 242 +/- 26 nmol/l, indicating that this observed difference was due to Ca2+ entry from the extracellular medium. Co2+ and Ni2+ abolished that difference by inhibiting Ca2+ influx. (iii) Nisoldipine, nitrendipine and nimodipine (10-50 nmol/l) inhibited in a dose-dependent manner platelet aggregation induced by either ADP or thrombin in platelets incubated in normal-Ca2+ normal-K+ medium, also, aggregation was inhibited to a similar extent in platelets incubated in normal-Ca2+ high-K+ medium. (iv) Nisoldipine--the most effective dihydropyridine to inhibit platelet aggregation--also inhibited Ca2+ influx in platelets incubated in normal-Ca2+ medium, either in normal-K+ or high-K+ media. Our data support the existence of voltage-operated, dihydropyridine-sensitive calcium channels (L-type) and a physiological role for them in platelet function.  相似文献   

7.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

8.
9, 11-Epithio-11, 12-methano-thromboxane A2 (STA2), a stable analogue of thromboxane A2, caused a rapid rise in cytoplasmic free Ca2+ concentration ([Ca2+]i) in human platelets as measured with the fluorescent Ca2+ indicator quin2. Concomitantly, this compound induced phosphorylation of myosin light chain which is catalyzed by Ca2+, calmodulin-dependent protein kinase. These reactions were fast enough to trigger serotonin release. 13-Azaprostanoic acid, a receptor level antagonist of thromboxane A2 inhibited STA2-induced elevation of [Ca2+]i, phosphorylation of myosin light chain and serotonin release. These results provide evidence that STA2 interacts with a thromboxane A2 receptor which leads to elevation of [Ca2+]i.  相似文献   

9.
This laboratory demonstrated earlier that oleic acid inhibited platelet activating factor (PAF)-induced aggregation and serotonin release of rabbit platelets (M. Miwa, C. Hill, R. Kumar, J. Sugatani, M. S. Olson, and D. J. Hanahan, 1987, J. Biol. Chem. 262, 527-530). More recently, we reported that oleic acid caused a decrease in phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2), but did not affect the level of inositol-1,4,5-trisphosphate (IP3), in rabbit platelets (D. Nunez, J. Randon, C. Gandhi, A. Siafaka-Kapadai, M. S. Olson, and D. J. Hanahan, 1990, J. Biol. Chem. 265, 18330-18838). These results suggested that oleic acid did not stimulate phospholipase C. In contrast, PAF induced a decrease in PIP2 and an increase in PIP level and IP3. These effects were shown to be attenuated by oleic acid. In this current study, our experiments show that (a) oleic acid blocked PAF-induced rise in intracellular [Ca2+] (to provide a mechanism in agreement with our previous experiments which showed that oleic acid inhibited PAF-induced IP3 rise in platelets) and (b) oleic acid itself induced a gradual rise in [Ca2+]i, which would provide a mechanism for oleic acid-induced aggregation despite the fact that oleic acid did not cause the production of IP3 (Nunez et al., 1990). Oleic acid, in a dose-dependent manner, was shown to inhibit PAF-induced Ca2+ mobilization from intra- and extracellular sources. The inhibition was closely related to the suppressive effect of oleic acid on PAF-induced aggregation. Furthermore, oleic acid inhibited the PAF-stimulated phosphorylation of the 20- and 40-kDa proteins. At concentrations above 20 microM, oleic acid itself could induce platelet aggregation and Ca2+ mobilization, but the time sequence of these two responses in human platelets was significantly different from those obtained with PAF. Oleic acid alone, at 20 microM, caused a 1.4-fold increase in the cAMP level in platelets which was followed by a decline to a basal value at higher concentrations of this fatty acid. It seemed clear that elevation of adenylate cyclase activity was not associated with free fatty acid inhibition of platelet activation. Interestingly, both PAF and oleic acid added separately to human platelets induced protein-tyrosine phosphorylation, but oleic acid did not cause any inhibition of PAF-induced protein-tyrosine phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Vasopressin and adrenaline in combination exert synergistic effects on platelet activity. This study investigated the effects of sub-threshold concentrations of adrenaline (0.1-1 microM) on vasopressin (10 nM-1 microM)-induced platelet aggregation, ATP secretion, elevation of cytosolic free Ca2+ concentration ([Ca2+]i) and hydrolysis of inositol phospholipids, monitored as [32P]phosphatidic acid formation. Potentiation of vasopressin-induced aggregation and ATP secretion by adrenaline was accompanied by enhanced elevation of [Ca2+]i and [32P]phosphatidic acid formation. The stimulatory effects of adrenaline on vasopressin-induced platelet activation were mimicked by the combination of the Ca2+ ionophore, ionomycin, and the protein kinase C activator, phorbol 12-myristate 13-acetate, but not by either of these agents alone. These results suggest that the potentiation of vasopressin-induced platelet activation by adrenaline is mediated via enhancement of inositol phospholipid hydrolysis and elevation of [Ca2+]i.  相似文献   

11.
Secondary signals mediated by GPIIb/IIIa in thrombin-activated platelets   总被引:3,自引:0,他引:3  
We have previously found that stimulation of aequorin-loaded platelets by thrombin produced a two-peaked increase in intracellular free calcium concentration ([Ca2+]i), and the development of the second peak of [Ca2+]i was closely related with the aggregation. In this report, we studied the interrelationship between the GPIIb/IIIa complex, aggregation, cytoskeletons and [Ca2+]i of platelets. The pretreatment of the platelets with dihydrocytochalasin B (4 microM), an actin polymerization inhibitor, did not inhibit aggregation and TXB2 production, but did inhibit both actin polymerization and the second peak of [Ca2+]i increase induced by thrombin, suggesting that actin polymerization and the second peak of [Ca2+]i are interrelated. GRGDSP (100 microM), a synthetic anti-adhesive peptide, has already been reported to inhibit platelet aggregation and the second peak of [Ca2+]i induced by thrombin. It also inhibited actin polymerization and TXB2 production, suggesting that aggregation was important for not only the generation of the second peak of [Ca2+]i but also for actin polymerization and TXB2 production. PGI2 (5 nM) did not abolish but only delayed aggregation, TXB2 production, actin polymerization and the second peak of [Ca2+]i increase. These findings suggest that the secondary signals are caused by aggregation (fibrinogen-binding to the GPIIb/IIIa) in thrombin-aggregated platelets, which results in the TXA2 production and the secondary peak of [Ca2+]i increase, and the latter was dependent on actin polymerization.  相似文献   

12.
The effect of N-ethylmaleimide (NEM, 1-200 microM) on ADP- and thrombin-induced platelet aggregation and thrombin-induced increase in intracellular Ca2+ concentration was studied. Addition of NEM to platelets preaggregated with ADP or thrombin induces platelet disaggregation. The anti-aggregant activity of NEM was different for ADP- and thrombin-induced aggregations. At 200 microM concentration, NEM completely disaggregated ADP-induced aggregates and only partially disaggregated thrombin-aggregated platelets. NEM did not influence the thrombin-induced increase in cytoplasmic Ca2+ and had no effect on the basal level of Ca2+ in the cytosol of non-activated platelets. However, NEM decreased the level of thrombin-mobilized Ca2+ in the cytosol of activated platelets. Thus, NEM can induce disaggregation of ADP- and thrombin-preaggregated platelets by activating a system which removes Ca2+ from the platelet cytosol.  相似文献   

13.
It has been proposed that cyclic AMP inhibits platelet reactivity: by preventing agonist-induced phosphoinositide hydrolysis and the resultant formation of 1,2-diacylglycerol and elevation of cytosolic free Ca2+ concentration [( Ca2+]i); by promoting Ca2+ sequestration and/or extrusion; and by suppressing reactions stimulated by (1,2-diacylglycerol-dependent) protein kinase C and/or Ca2+-calmodulin-dependent protein kinase. We used the adenylate cyclase stimulant prostaglandin D2 to compare the sensitivity to cyclic AMP of the transduction processes (phosphoinositide hydrolysis and elevation of [Ca2+]i) and functional responses (shape change, aggregation and ATP secretion) that are initiated after agonist-receptor combination on human platelets. Prostaglandin D2 elicited a concentration-dependent elevation of platelet cyclic AMP content and inhibited platelet-activating-factor(PAF)-induced ATP secretion [I50 (concn. causing 50% inhibition) approximately 2 nM], aggregation (I50 approximately 3 nM), shape change (I50 approximately 30 nM), elevation of [Ca2+]i (I50 approximately 30 nM) and phosphoinositide hydrolysis (I50 approximately 10 nM). A 2-fold increase in cyclic AMP content resulted in abolition of PAF-induced aggregation and ATP secretion, whereas maximal inhibition of shape change, phosphoinositide hydrolysis and elevation of [Ca2+]i required a greater than 10-fold elevation of the cyclic AMP content. This differential sensitivity of the various responses to inhibition by cyclic AMP suggests that the mechanisms underlying PAF-induced aggregation and ATP secretion differ from those underlying shape change. Thus a major component of the cyclic AMP-dependent inhibition of PAF-induced platelet aggregation and ATP secretion is mediated by suppression of certain components of the activation process that occur distal to the formation of DAG or elevation of [Ca2+]i.  相似文献   

14.
Epinephrine (E) and norepinephrine (NE) alone did not increase free intracellular Ca2+ ([Ca2+]i) in human platelets loaded with Quin-2 or Fura-2; however, they did potentiate the effects of vasopressin (VP), serotonin (S) and platelet activating factor (PAF). The synergism in [Ca2+]i increase was also obtained in the presence of VP together with PAF, S with PAF as well as VP with S. The effect of E or NE was blocked by yohimbine and phentolamine. Prazosin was less effective, while propranolol had no effect at all. Clonidine did not potentiate the effects of VP, S or PAF on [Ca2+]i; however, it did block the potentiation induced by E or NE. E potentiated the VP-induced 45Ca2+ uptake as well as VP-stimulated inositol 1,4,5-trisphosphate (IP3) formation. E alone did not change significantly the level of IP3 in platelets, nor did it influence the cyclic AMP level. The experimental results suggest that both Ca2+ influx and polyphosphoinositide breakdown underlie the mechanism of potentiation.  相似文献   

15.
J S Elce  L Sigmund    M J Fox 《The Biochemical journal》1989,261(3):1039-1042
Calpain-catalysed hydrolysis of platelet substrates such as cytoskeletal and calmodulin-binding proteins, and of protein kinase C, is assumed to contribute to platelet aggregation. We have measured calpain I activation by immunoblotting, and [Ca2+]i (cytoplasmic Ca2+ concn.) by fura-2 fluorescence, in parallel with measurement of aggregation, in stirred human platelets treated at different [Ca2+]ext (extend Ca2+ concns.) with A23187, leupeptin, phorbol ester and thrombin. Hydrolysis of actin-binding protein, and [3H]5-hydroxytryptamine release, were also measured in some cases. A rise in [Ca2+]i, platelet aggregation and calpain activation often occurred together. With some combinations of agonists and [Ca2+]ext, however, this correlation was clearly not maintained. It was shown: (a) that activation of calpain and its hydrolysis of platelet substrates were not strictly necessary conditions for platelet secretion and aggregation; (b) conversely, that calpain activation could occur without aggregation.  相似文献   

16.
Effects of Welsh onion extracts on human platelet function in vitro   总被引:3,自引:0,他引:3  
Chen JH  Chen HI  Wang JS  Tsai SJ  Jen CJ 《Life sciences》2000,66(17):1571-1579
Welsh onion has been consumed for prevention of cardiovascular disorders. However, its underlying mechanisms are still unclear. This study investigated whether Welsh onion extracts can alter human platelet function (ie, platelet adhesion, aggregation, and thromboxane release). To clarify the underlying mechanisms, we also measured the intracellular calcium ([Ca2+]i) and cyclic nucleotide levels in platelets. Our results showed that 1) boiled extracts directly induced platelet aggregation in a dose-dependent manner; 2) raw extracts inhibited platelet adhesion and ADP-evoked platelet aggregation, while boiled extracts enhanced them; 3) raw green extract suppressed ADP-stimulated platelet [Ca2+]i elevation and thromboxane production, whereas boiled green extract enhanced them; 4) raw green extract elevated platelet cAMP level, whereas boiled green extract had no effect on cAMP level. Furthermore, the boiled green extract, but not the raw extract, induced pronounced platelet morphological changes. In conclusion, raw extracts of Welsh onion inhibit platelet function in vitro while boiled extracts activate platelets.  相似文献   

17.
As widely assumed, platelets and coagulation system heavily influence the pathogenesis and progression of cardiovascular diseases. Some 1,4-naphthoquinone derivatives, such as vitamin K3, have been reported to increase the synthesis of coagulation proteins. In this study, we examine how 2-p-mercaptophenyl -1,4-naphthoquinone (NTP), a newly synthesized 1,4-naphthoquinone derivative, affects the platelet function in humans. A tapered parallel plate chamber which provided a range of shear stress covering the entire physiological range in human circulation is used to assess platelet adhesiveness on fibrinogen coated-surface. In addition, platelet aggregation and thromboxane B2 (TXB2) production by inducers are evaluated by the turbidimetric method and enzyme immunoassay kit, respectively. Moreover, platelets [Ca2+]i are measured using a dual-wavelength fluorescence spectrophotometer. Analysis results indicate that 1) NTP decreases the percentages of attached platelets at the locations in various shear stresses and the levels of platelet adhesiveness, denoted as the slope; 2) NTP can inhibit the platelet aggregation by ADP (2 microM) and collagen (25 microg/ml), and the IC50 are: 0.32 and 26.83 microg/ml, respectively; and 3) NTP markedly inhibits TXB2 formation and platelet [Ca2+]i elevation caused by ADP and collagen. Therefore, we conclude that NTP may inhibit platelet adhesiveness on fibrinogen coated-surface, aggregability, [Ca2+]i, and thromboxane production, and that it may be used as an antiplatelet agent.  相似文献   

18.
The addition of arachidonic acid induced a rapid release of 45Ca2+ from human platelet membrane vesicles which accumulated 45Ca2+ in the presence of ATP. Docosahexaenoic acid, eicosapentaenoic acid, linolenic acid and linoleic acid were less active than arachidonic acid. In contrast, oleic acid, myristic acid and palmitic acid were without effect. The thromboxane A2 analogue induced no 45Ca2+ release. The cyclooxygenase/lipoxygenase inhibitor failed to suppress arachidonic acid-induced 45Ca2+ release at the concentration which inhibited the production of lipid peroxides. These data indicate that the activity of arachidonic acid may be due to fatty acid itself and not to its metabolites. The combination of arachidonic acid and inositol 1,4,5-trisphosphate (IP3) resulted in a greater 45Ca2+ release from platelet membrane vesicles than either compound alone. When the intracellular free Ca2+ concentration ([Ca2+]i) was measured using fura-2, the thrombin-induced [Ca2+]i increase was reduced in platelets which had been treated with a phospholipase A2 inhibitor, ONO-RS-082 (2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid). These results provide evidence that arachidonic acid alone may cause Ca2+ increase and also may induce an additional Ca2+ mobilization to IP3-induced Ca2+ release in human platelets.  相似文献   

19.
The effects of phorbol ester (PMA) and stable prostaglandin endoperoxide analog (U46619) on platelet interaction with a surface coated with monomeric type V collagen (CV substrate) and free Ca2+ concentration in platelet cytoplasm ([Ca2+]in) have been studied. In the absence of PMA and U46619, the discoid and spherical platelets from suspension are attached to CV substrate but are incapable of spreading and aggregation on the substrate. An addition of PMA (0.15-1.5 nM) or U46619 (1.5 microM) to the reaction mixture stimulates platelet spreading and the formation of multilayer (thrombi-like) aggregates on CV substrate. Using the fluorescent probe Quin 2, it was found that U46619 (0.1 microM) increases [Ca2+]in from the basal level (100-120 mM) to 600 nM. PMA (0.75-15 nM) exerts only a slight effect increasing [Ca2+]in by 30-40 nM. The data obtained suggest that the PMA-induced spreading and aggregation of platelets on CV substrate can occur via activation of protein kinase C at relatively low [Ca2+]in values. These results also testify to the existence of a substrate-independent mechanism of spreading of platelets activated in suspensions by soluble inducers.  相似文献   

20.
The pharmacological mechanisms of platelet aggregation induced by highly toxic proteins (CrTX-I, CrTX-II, and CrTX-III) obtained from tentacles of a jellyfish, Carybdea rastonii, were investigated. When the partially purified toxin (pCrTX) and CrTXs were added to the citrated platelet-rich plasma (PRP), aggregation was produced in a concentration-dependent manner. The activity of CrTXs was approximately 100 times more potent than pCrTX. The CrTXs-induced aggregation was little affected by indomethacin and quinacrine at concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. The CrTXs-induced aggregation in washed platelets was significantly augmented in the presence of Ca2+. The pretreatment with verapamil failed to modify this augmentation of aggregation. The concentration of cytoplasmic-free calcium ([Ca2+]i) of platelets was increased by CrTXs at the same concentrations that produced aggregation. This effect of CrTXs was again little affected by verapamil. CrTXs at the same concentrations as those that produced aggregation and increased [Ca2+]i caused depolarization of platelets, which was unchanged after pretreatment with sodium or potassium transport inhibitors. CrTX-I significantly increased the 22Na flux into platelets and this effect of CrTX-I was unaffected by tetrodotoxin. The CrTX-I-induced aggregation, depolarization, and increase in [Ca2+]i were all significantly attenuated in the low Na+ medium. These results suggest that CrTXs cause a massive depolarization by increasing cation permeability and this generalized depolarization permits an inward movement of Ca2+ down its electrochemical gradient which, in turn, triggers platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号