共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work a simple kinetic model to describe the biosynthesis of lovastatin by Aspergillus terreus ATCC 20542 was proposed. Several series of experiments were conducted at different media compositions. The concentrations of C- and N-sources were changed over a wide range and so were the initial biomass concentrations. From these runs the relationships ruling the substrates uptake, biomass and product formation were learnt. Lovastatin biosynthesis appeared to be partly growth associated. The inhibitive effect of organic nitrogen on lovastatin biosynthesis was found and lactose appeared to be an important limiting substrate in the formation of lovastatin. The parameters of the model were evaluated on the basis of the kinetic data obtained in the separate experiments made in triplicate at two chosen media compositions. Other results obtained at different media compositions were independent of the ones mentioned above and used for the verification of the model. The validity of the model was also examined for the lactose-fed fed-batch run. Finally, a sensitivity analysis of the model parameters was performed. The formulated model, although relatively simplified, described the experimental data quite well and could be regarded as the background for further attempts to mathematically describe the process of lovastatin biosynthesis. 相似文献
2.
This review focuses on selected aspects of lovastatin biosynthesis by Aspergillus terreus. Biochemical issues concerning this process are presented to introduce polyketide metabolites, in particular lovastatin. The formation of other than lovastatin polyketide metabolites by A. terreus is also shown, with special attention to (+)-geodin and sulochrin. The core of this review discusses the physiology of A. terreus with regard to the influence of carbon and nitrogen sources, cultivation broth aeration and pH control strategies on fungal growth and product formation. Attention is paid to the supplementation of cultivation media with various compounds, namely vitamins, methionine, butyrolactone I. Next, the analysis of fungal morphology and differentiation of A. terreus mycelium in relation to both lovastatin and to (+)-geodin formation is conferred. Finally, the kinetics of the process, in terms of associated metabolite formation with biomass growth is discussed in relation to published kinetic models. The review concludes with a list of the most important factors affecting lovastatin and (+)-geodin biosynthesis. 相似文献
3.
Production of lovastatin by a wild strain of Aspergillus terreus 总被引:3,自引:0,他引:3
Of 68 Aspergillus terreus, three produced lovastatin with equivalent or better yield than strain ATCC 20542 originally described for lovastatin production. Medium optimization experiments with the best isolate (TUB F-514) indicated that lactose, rapeseed meal and KNO3 were the best carbon, organic nitrogen and inorganic nitrogen sources, respectively. In shake-flasks with optimized medium containing 4 % (w/v) lactose, 400 g lovastatin/ml was produced, with a yield of 10 mg/g lactose. In solid substrate fermentation on extracted sweet sorghum pulp supplemented with cheese whey 1500 g lovastatin/g dry weight was produced with a yield of 37.5 mg/g lactose. © Rapid Science Ltd. 1998 相似文献
4.
5.
Lovastatin biosynthesis with Aspergillus terreus in batch fermentation reached 160 U/l in 161 h at pH 6.8 and a dissolved O tension maintained at 70%. At the end of repeated fed batch fermentations, the yield of lovastatin was increased by 37% though this took over twice as long as in the batch fermentation. 相似文献
6.
Porcel ER López JL Ferrón MA Pérez JA Sánchez JL Chisti Y 《Bioprocess and biosystems engineering》2006,29(1):1-5
The production of biomass and lovastatin by spore-initiated submerged fermentations of Aspergillus terreus ATCC 20542 was shown to depend on the age of the spores used for inoculation. Cultures started from older spores produced significantly higher titers of lovastatin. For example, the lovastatin titer increased by 52% when the spore age at inoculation rose from 9 to 16 days. The lovastatin titer for a spore age of 16 days was 186.5±20.1 mg L−1. The time to sporulation on surface cultures was sensitive to the light exposure history of the fungus and the spore inoculation concentration levels. A light exposure level of 140 μE m−2 s−1 and a spore concentration of 1,320 spore cm−2 produced the greatest extent of sporulation within about 50 h of inoculation. Sporulation was slowed in the dark and with diluted inoculants. A rigorous analysis of the data of statistically designed experiments showed the above observations to be highly reproducible. 相似文献
7.
8.
9.
S. Sierra B. Rodelas M. V. Martínez-Toledo C. Pozo J. González-López 《Journal of applied microbiology》1999,86(5):851-858
Twenty-eight strains of Rhizobium spp. were tested for their ability to grow in chemically-defined medium lacking growth factors. Two strains, R. meliloti GR4B and Rhizobium spp. ( Acacia ) GRH28, were selected, on the basis of their good growth under the conditions imposed, for further quantification of the production of water-soluble vitamins (thiamine, niacin, riboflavin, pantothenic acid and biotin) in chemically defined media amended with different compounds (mannitol, glucose or sodium succinate) as sole carbon sources. Qualitative and quantitative production of vitamins in chemically-defined media was significantly affected by the use of C sources of a different nature and the age of the cultures. Strain GRH28 produced all the vitamins analysed, and high biological levels of biotin (14 ng ml–1 culture) were detected after 6 d of culture in mineral medium amended with mannitol. Pantothenic acid was the vitamin detected in the highest amounts (up to 1 μg ml–1 of culture) in culture supernatant fluids of strain GR4B grown for 6 d with succinate as sole carbon source. 相似文献
10.
A wild type Aspergillus terreus GD13 strain, chosen after extensive screening, was optimized for lovastatin production using statistical Box-Behnken design of experiments. The interactive effect of four process parameters, i.e. lactose and soybean meal, inoculum size (spore concentration) and age of the spore culture, on the production of lovastatin was evaluated employing response surface methodology (RSM). The model highlighted the positive effect of soybean meal concentration and inoculum level for achieving maximal level of lovastatin (1342 mg/l). The optimal fermentation conditions improved the lovastatin titre by 7.0-folds when compared to the titres obtained under unoptimized conditions. 相似文献
11.
Lovastatin is a secondary metabolite produced by Aspergillus terreus. A chemically defined medium was developed in order to investigate the influence of carbon and nitrogen sources on lovastatin biosynthesis. Among several organic and inorganic defined nitrogen sources metabolized by A. terreus, glutamate and histidine gave the highest lovastatin biosynthesis level. For cultures on glucose and glutamate, lovastatin synthesis initiated when glucose consumption levelled off. When A. terreus was grown on lactose, lovastatin production initiated in the presence of residual lactose. Experimental results showed that carbon source starvation is required in addition to relief of glucose repression, while glutamate did not repress biosynthesis. A threefold-higher specific productivity was found with the defined medium on glucose and glutamate, compared to growth on complex medium with glucose, peptonized milk, and yeast extract. 相似文献
12.
13.
《Enzyme and microbial technology》2005,36(5-6):737-748
The effect of the changes of culturing environments of Aspergillus terreus on lovastatin production was investigated in the study. A relatively low supplement of dissolved O2 (DO) by the fungus almost stopped performing product formation. With the DO controlled at 20%, lovastatin production using a 5-l fermenter enhanced by 38%, biomass production decreased by 25% and sugar utilization increased by 18%, as compared with the shaking-flask culture. Meanwhile, an average diameter 0.95 mm of compact pellets was found. We thus concluded that pellet formation with a narrow size distribution dominated lovastatin production by A. terreus, which was closely affected by the relatively saturated level of DO. Nevertheless, manipulating the broth pH at 5.5–7.5 starting from 48 h provided no benefit to product formation although biomass production was reduced largely. In the part of work, a pH/DO interaction was also confirmed.A simple temperature-shift method (28–23 °C) was proved surprisingly valuable to the fermentation process. Such experiments showed that the maximum of lovastatin production was further enhanced by 25% (572 mg/l at day 10) in comparison with that when the fungus was cultured at 28 °C. The timing to initiate the temperature-shift (96 h) corresponded to that of pellet formation and the subsequent core compactness. Hence, it was found that lovastatin production by A. terreus favored sub-optimal growth conditions. 相似文献
14.
The simultaneous biosynthesis of lovastatin (mevinolinic acid) and (+)-geodin by Aspergillus terreus ATCC 20542 with regard to the medium composition, i.e. the concentrations of carbon and nitrogen source, was described in this paper. A. terreus is a lovastatin producer but the formation of lovastatin was accompanied by the significant amounts of (+)-geodin, when the elevated concentration of carbon source (lactose) was still present in the medium in the idiophase and nitrogen source (yeast extract) was deficient. It was observed for runs, in which the higher (above 20 g l(-1)) initial lactose concentration was applied or when the nitrogen deficiency led to the decrease of biomass content in the system. In contrast to lovastatin, there was not optimum initial concentration of yeast extract, as its lowest tested initial concentration (2 g l(-1)) led to the highest (+)-geodin volumetric formation rates and final yield. What is more, even higher final (+)-geodin concentrations were achieved at elevated initial lactose concentration (40 g l(-1)) and in the lactose-fed fed-batch run. In the fed-batch run lovastatin concentration increased significantly too, as this metabolite formation is also carbon source dependent. Finally, (+)-geodin occurred to be a metabolite, whose formation, in contrast to lovastatin, is non-growth associated. 相似文献
15.
16.
Mevinolinic acid biosynthesis by Aspergillus terreus and its relationship to fatty acid biosynthesis. 总被引:2,自引:0,他引:2
Mevinolinic acid, the open acid form of mevinolin, which is a metabolite of Aspergillus terreus, has been shown to be a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (Alberts et al., Proc. Natl. Acad. Sci. U.S.A. 77:3957-3961, 1980). The biosynthesis of mevinolinic acid was studied by examining the incorporation of [1-14C]acetate and [methyl-14C]methionine into the molecule. These isotopes were rapidly incorporated into mevinolinic acid, with [1-14C]acetate and [methyl-14C]methionine incorporation being linear for at least 10 and 30 min, respectively. A comparison of acetate incorporation into mevinolinic acid and fatty acids indicated that mevinolinic acid biosynthesis increased with a maximum between days 3 and 5 of growth; at this time cell growth had ceased and fatty acid biosynthesis was negligible. Hydrolysis of the mevinolinic acid and isolation of the products showed that [1-14C]acetate and [methyl-14C]methionine were incorporated into the 2-methylbutyric acid side chain as well as into the main (alcohol) portion of the molecule. 相似文献
17.
Casas López JL Sánchez Pérez JA Fernández Sevilla JM Rodríguez Porcel EM Chisti Y 《Journal of biotechnology》2005,116(1):61-77
Pellet growth of Aspergillus terreus ATCC 20542 in submerged batch fermentations in stirred bioreactors was used to examine the effects of agitation (impeller tip speed u(t) of 1.01-2.71 ms(-1)) and aeration regimens (air or an oxygen-enriched mixture containing 80% oxygen and 20% nitrogen by volume) on the fungal pellet morphology, broth rheology and lovastatin production. The agitation speed and aeration methods used did not affect the biomass production profiles, but significantly influenced pellet morphology, broth rheology and the lovastatin titers. Pellets of approximately 1200 microm initial diameter were reduced to a final stable size of approximately 900 microm when the agitation intensity was >/=600 rpm (u(t)>/=2.03 ms(-1)). A stable pellet diameter of approximately 2500 microm could be attained in less intensely agitated cultures. These large fluffy pellets produced high lovastatin titers when aerated with oxygen-enriched gas but not with air. Much smaller pellets obtained under highly agitated conditions did not attain high lovastatin productivity even in an oxygen-enriched atmosphere. This suggests that both an upper limit on agitation intensity and a high level of dissolved oxygen are essential for attaining high titers of lovastatin. Pellet size in the bioreactor correlated equally well with the specific energy dissipation rate and the energy dissipation circulation function. The latter took into account the frequency of passage of the pellets through the high shear regions of the impellers. Pellets that gave high lovastatin titers produced highly shear thinning cultivation broths. 相似文献
18.
19.
20.
Conversion of cyclic nonaketides to lovastatin and compactin by a lovC deficient mutant of Aspergillus terreus. 总被引:2,自引:0,他引:2
K Auclair J Kennedy C R Hutchinson J C Vederas 《Bioorganic & medicinal chemistry letters》2001,11(12):1527-1531
Investigation of the post-PKS biosynthetic steps to the cholesterol-lowering agent lovastatin (1) using an Aspergillus terreus strain with a disrupted lovC gene, which is essential for formation of 4a,5-dihydromonacolin L (3), shows that 7 and 3 are precursors to 1, and demonstrates that lovastatin diketide synthase (lovF protein) does not require lovC. 相似文献