首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous study has shown that a peroxidase is present in the mature eggs of Aedes aegypti mosquitoes, and the enzyme is involved in the formation of a rigid and insoluble chorion by catalyzing chorion protein crosslinking through dityrosine formation. In this study, chorion peroxidase was solubilized from egg chorion by 1% SDS and 2 M urea and purified by various chromatographic techniques. The enzyme has a relative molecular mass of 63,000 as estimated by SDS-PAGE. Spectral analysis of the enzyme revealed the presence of the Soret band with a lambda(max) at 415 nm, indicating that chorion peroxidase is a hemoprotein. Treatment of the native enzyme with H2O2 in excess in the absence of reducing agents shifted the Soret band from 415 to 422 nm, and reduction of the native enzyme with sodium hydrosulfite under anaerobic conditions changed the Soret band from 415 to 446 nm. These results show that the chorion peroxidase behaves similarly to other peroxidases under oxidative and reductive conditions, respectively. Compared to other peroxidases, the chorion peroxidase, however, is extremely resistant to denaturing agents, such as SDS and organic solvents. For example, chorion peroxidase remained active for several weeks in 1% SDS, while horseradish peroxidase irreversibly lost all its activity in 2 h under the same conditions. Comparative analysis between mosquito chorion peroxidase and horseradish peroxidase showed that the specific activity of chorion peroxidase to tyrosine was at least 100 times greater than that of horseradish peroxidase to tyrosine. Chorion peroxidase is also capable of catalyzing polypeptide and chorion protein crosslinking through dityrosine formation during in vitro assays. Our data suggest that the characteristics of the chorion peroxidase in mosquitoes closely reflect its functions in chorion formation and hardening.  相似文献   

2.
Aedes aegypti chorion peroxidase (CPO) plays a crucial role in chorion hardening by catalyzing chorion protein cross-linking through dityrosine formation. The enzyme is extremely resistant to denaturing conditions, which seem intimately related to its post-translational modifications, including disulfide bond formation and glycosylation. In this report, we have provided data that describe a new type of glycosylation in CPO, where a mannose is linked to the N-1 atom of the indole ring of Trp residue. Through liquid chromatography/electrospray ionization/tandem mass spectrometry and de novo sequencing of CPO tryptic peptides, we determined that three of the seven available Trp residues in mature CPO are partially (40-50%) or completely mannosylated. This conclusion is based on the following properties of the electrospray ionization/tandem mass spectrometry spectra and the enzymatic reaction of these peptides: 1) the presence of a 162-Da substituent in each Trp residue; 2) the presence of abundant fragments of m/z 163 ([Hex + H]) and [M + H - 162] (typical for N-glycosides); 3) the absence of a loss of 120 Da (this loss is typical for aromatic C-glycosides); and 4) the cleavage of the glycosidic linkage by PNGase A or F (typical for N-glycans). These results establish that a C-N bond is formed between the anomeric carbon of a mannose residue and the N-1 atom of the indole ring of Trp. This is the first report that provides definitive evidence for N-mannosylation of Trp residues in a protein. In addition, our data demonstrate that PNGase can hydrolyze Trp N-linked mannose in peptides, which is unusual because no typical beta-amide bond is present in the Trp-mannosyl moiety. Results of this study should stimulate research toward a comprehensive understanding of physiology and biochemistry of Trp N-mannosylation in proteins and the overall biochemical mechanisms of PNGase-catalyzed reactions.  相似文献   

3.
Lauryl sulfate inhibits the Deltamu;(H)(+)-dependent reverse electron transfer reactions catalyzed by NADH:ubiquinone oxidoreductase (Complex I) in coupled bovine heart submitochondrial particles and in vesicles derived from Paracoccus denitrificans. The inhibitor affects neither NADH oxidase (coupled or uncoupled) nor NADH:ferricyanide reductase and succinate oxidase activities at the concentrations that selectively prevent the succinate-supported, rotenone-sensitive NAD(+) or ferricyanide reduction. Possible uncoupling effects of the inhibitor are ruled out: in contrast to oligomycin and gramicidin, which increases and decreases the rate of the reverse electron transfer, respectively, in parallel with their coupling and uncoupling effects, lauryl sulfate does not affect the respiratory control ratio. A mechanistic model for the unidirectional effect of lauryl sulfate on the Complex I catalyzed oxidoreduction is proposed.  相似文献   

4.
Catalase-peroxidases (KatG) produced by Burkholderia pseudomallei, Escherichia coli, and Mycobacterium tuberculosis catalyze the oxidation of NADH to form NAD+ and either H2O2 or superoxide radical depending on pH. The NADH oxidase reaction requires molecular oxygen, does not require hydrogen peroxide, is not inhibited by superoxide dismutase or catalase, and has a pH optimum of 8.75, clearly differentiating it from the peroxidase and catalase reactions with pH optima of 5.5 and 6.5, respectively, and from the NADH peroxidase-oxidase reaction of horseradish peroxidase. B. pseudomallei KatG has a relatively high affinity for NADH (Km=12 microm), but the oxidase reaction is slow (kcat=0.54 min(-1)) compared with the peroxidase and catalase reactions. The catalase-peroxidases also catalyze the hydrazinolysis of isonicotinic acid hydrazide (INH) in an oxygen- and H2O2-independent reaction, and KatG-dependent radical generation from a mixture of NADH and INH is two to three times faster than the combined rates of separate reactions with NADH and INH alone. The major products from the coupled reaction, identified by high pressure liquid chromatography fractionation and mass spectrometry, are NAD+ and isonicotinoyl-NAD, the activated form of isoniazid that inhibits mycolic acid synthesis in M. tuberculosis. Isonicotinoyl-NAD synthesis from a mixture of NAD+ and INH is KatG-dependent and is activated by manganese ion. M. tuberculosis KatG catalyzes isonicotinoyl-NAD formation from NAD+ and INH more efficiently than B. pseudomallei KatG.  相似文献   

5.
The chorion of Aedes aegypti eggs undergoes a hardening process following oviposition and individual chorion proteins become insoluble thereafter. Our previous studies determined that peroxidase-catalyzed chorion protein crosslinking and phenoloxidase-mediated chorion melanization are primarily responsible for the formation of a hardened, desiccation resistant chorion in A. aegypti eggs. To gain further understanding of peroxidase- and phenoloxidase-catalyzed biochemical processes during chorion hardening, we analyzed chorion proteins, identified three low molecular weight major endochorion proteins that together constituted more than 70% of the total amount of endochorion proteins, and assessed their insolubilization in relation to phenoloxidase- and peroxidase-catalyzed reactions under different conditions. Our data suggest that the three low molecular weight endochorion proteins undergo disulfide bond crosslinking prior to oviposition in A. aegypti eggs, and that they undergo further crosslinking through dityrosine or trityrosine formation by peroxidase-catalyzed reactions. Our data suggest that chorion peroxidase is primarily responsible for the irreversible insolubilization of the three major endochorion proteins after oviposition. The molecular mechanisms of chorion hardening are also discussed.  相似文献   

6.
Complex I (NADH:ubiquinone oxidoreductase) is responsible for most of the mitochondrial H2O2 release, both during the oxidation of NAD-linked substrates and during succinate oxidation. The much faster succinate-dependent H2O2 production is ascribed to Complex I, being rotenone-sensitive. In the present paper, we report high-affinity succinate-supported H2O2 generation in the absence as well as in the presence of GM (glutamate/malate) (1 or 2 mM of each). In brain mitochondria, their only effect was to increase from 0.35 to 0.5 or to 0.65 mM the succinate concentration evoking the semi-maximal H2O2 release. GM are still oxidized in the presence of succinate, as indicated by the oxygen-consumption rates, which are intermediate between those of GM and of succinate alone when all substrates are present together. This effect is removed by rotenone, showing that it is not due to inhibition of succinate influx. Moreover, alpha-oxoglutarate production from GM, a measure of the activity of Complex I, is decreased, but not stopped, by succinate. It is concluded that succinate-induced H2O2 production occurs under conditions of regular downward electron flow in Complex I. Succinate concentration appears to modulate the rate of H2O2 release, probably by controlling the hydroquinone/quinone ratio.  相似文献   

7.
Nox-1 from Streptococcus mutans, the bacteria which cause dental caries, was previously identified as an H2O2-forming reduced nicotinamide adenine dinucleotide (NADH) oxidase. Nox-1 is homologous with the flavoprotein component, AhpF, of Salmonella typhimurium alkyl hydroperoxide reductase. A partial open reading frame upstream of nox1, homologous with the other (peroxidase) component, ahpC, from the S. typhimurium system, was also identified. We report here the complete sequence of S. mutans ahpC. Analyses of purified AhpC together with Nox-1 have verified that these proteins act as a cysteine-based peroxidase system in S. mutans, catalyzing the NADH-dependent reduction of organic hydroperoxides or H2O2 to their respective alcohols and/or H2O. These proteins also catalyze the four-electron reduction of O2 to H2O2, clarifying the role of Nox-1 as a protective protein against oxygen toxicity. Major differences between Nox-1 and AhpF include: (i) the absolute specificity of Nox-1 for NADH; (ii) lower amounts of flavin semiquinone and a more prominent FADH2 to NAD+ charge transfer absorbance band stabilized by Nox-1; and (iii) even higher redox potentials of disulfide centers relative to flavin for Nox-1. Although Nox-1 and AhpC from S. mutans were shown to play a protective role against oxidative stress in vitro and in vivo in Escherichia coli, the lack of a significant effect on deletion of these genes from S. mutans suggests the presence of additional antioxidant proteins in these bacteria.  相似文献   

8.
Intrinsic NADPH diaphorase activity is a component of the membrane-bound NAD(P)H:O2 oxidoreductase of human neutrophils. NADH-specific diaphorase activity is also present in membrane fractions rich in oxidoreductase activity. Studies were undertaken to determine whether the NADH diaphorase might also be intrinsic to the oxidoreductase. The latter diaphorase was freed from the membrane by detergent extraction and partially purified approximately 80-fold. Its apparent molecular weight following solubilization in deoxycholate and Tween-20 was 204 000 +/- 10 000. The specific activity of the partially purified diaphorase with ferricyanide as electron acceptor was 7.6 X 10(3) mU/mg protein, its pH optimum was 7.0, and its Km for NADH was 13 microM. It is completely devoid of NADPH diaphorase activity, lacks the capacity to reduce molecular oxygen, yet readily reduces ferricyanide, 2,6-dichlorophenolindophenol and ferricytochrome c. Whereas the NADH diaphorase was freed from the particulate fraction of cell lysates by extraction in 10 mM Tris-HCl buffer (pH 8.6) made up in 15% glycerol and 0.5% Tween-20, NADPH-dependent diaphorase and superoxide-generating activities also present in the membrane were not. These observations make it unlikely that the principal membrane-bound NADH diaphorase found in human neutrophils is a component of the NAD(P)H:O2 oxidoreductase, despite its common association in the same particulate fraction of cell lysates.  相似文献   

9.
Succinic acid is not the dominant fermentation product from glucose in wild-type Escherichia coli W1485. To reduce byproduct formation and increase succinic acid accumulation, pyruvate formate-lyase and lactate dehydrogenase, encoded by pflB and ldhA genes, were inactivated. However, E. coli NZN111, the ldhA and pflB deletion strain, could not utilize glucose anaerobically due to the block of NAD(+) regeneration. To restore glucose utilization, overexpression of nicotinic acid phosphoribosyltransferase, a rate limiting enzyme of NAD(H) synthesis encoded by the pncB gene, resulted in a significant increase in cell mass and succinic acid production. Furthermore, the results indicated a significant increase in NAD(H) pool size, and decrease in the NADH/NAD(+) ratio from 0.64 to 0.13, in particular, the concentration of NAD(+) increased 6.2-fold during anaerobic fermentation. In other words, the supply of enough NAD(+) for NADH oxidation by regulation of NAD(H) salvage synthesis mechanism could improve the cell growth and glucose utilization anaerobically. In addition, the low NADH/NAD(+) ratio also change the metabolite distribution during the dual-phase fermentation. As a result, there was a significant increase in succinic acid production, and it is provided further evidence that regulation of NAD(H) pool and NADH/NAD(+) ratio was very important for succinic acid production.  相似文献   

10.
Liszkay A  van der Zalm E  Schopfer P 《Plant physiology》2004,136(2):3114-23; discussion 3001
Cell extension in the growing zone of plant roots typically takes place with a maximum local growth rate of 50% length increase per hour. The biochemical mechanism of this dramatic growth process is still poorly understood. Here we test the hypothesis that the wall-loosening reaction controlling root elongation is effected by the production of reactive oxygen intermediates, initiated by a NAD(P)H oxidase-catalyzed formation of superoxide radicals (O(2)(.-)) at the plasma membrane and culminating in the generation of polysaccharide-cleaving hydroxyl radicals ((.)OH) by cell wall peroxidase. The following results were obtained using primary roots of maize (Zea mays) seedlings as experimental material. (1) Production of O(2)(.-), H(2)O(2), and (.)OH can be demonstrated in the growing zone using specific histochemical assays and electron paramagnetic resonance spectroscopy. (2) Auxin-induced inhibition of growth is accompanied by a reduction of O(2)(.-) production. (3) Experimental generation of (.)OH in the cell walls with the Fenton reaction causes wall loosening (cell wall creep), specifically in the growing zone. Alternatively, wall loosening can be induced by (.)OH produced by endogenous cell wall peroxidase in the presence of NADH and H(2)O(2). (4) Inhibition of endogenous (.)OH formation by O(2)(.-) or (.)OH scavengers, or inhibitors of NAD(P)H oxidase or peroxidase activity, suppress elongation growth. These results show that juvenile root cells transiently express the ability to generate (.)OH, and to respond to (.)OH by wall loosening, in passing through the growing zone. Moreover, inhibitor studies indicate that (.)OH formation is essential for normal root growth.  相似文献   

11.
The production of H2O2 by brain mitochondria was monitored employing a new technique based on the horseradish peroxidase dependent oxidation of acetylated ferrocytochrome c. It was shown that brain mitochondria release H2O2 by an intermediate autooxidation at the QH2-cytochrome c oxidoreductase level (induced by antimycin A and inhibited by myxothiazol). With both succinate and pyruvate plus malate this H2O2 release is inhibited at high substrate concentrations. With pyruvate plus malate a second source of H2O2 could be detected, apparently from autoxidation at the NADH dehydrogenase level. With alpha-glycerophosphate some H2O2 derives from autooxidation at the alpha-glycerophosphate dehydrogenase. The NADH dehydrogenase dependent, but not the QH2-cytochrome c oxidoreductase dependent H2O2 was significantly stimulated upon depletion of the mitochondrial glutathione.  相似文献   

12.
Respiring mitochondria produce H(2)O(2) continuously. When production exceeds scavenging, H(2)O(2) emission occurs, endangering cell functions. The mitochondrial peroxidase peroxiredoxin-3 reduces H(2)O(2) to water using reducing equivalents from NADPH supplied by thioredoxin-2 (Trx2) and, ultimately, thioredoxin reductase-2 (TrxR2). Here, the contribution of this mitochondrial thioredoxin system to the control of H(2)O(2) emission was studied in isolated mitochondria and cardiomyocytes from mouse or guinea pig heart. Energization of mitochondria by the addition of glutamate/malate resulted in a 10-fold decrease in the ratio of oxidized to reduced Trx2. This shift in redox state was accompanied by an increase in NAD(P)H and was dependent on TrxR2 activity. Inhibition of TrxR2 in isolated mitochondria by auranofin resulted in increased H(2)O(2) emission, an effect that was seen under both forward and reverse electron transport. This effect was independent of changes in NAD(P)H or membrane potential. The effects of auranofin were reproduced in cardiomyocytes; superoxide and H(2)O(2) levels increased, but similarly, there was no effect on NAD(P)H or membrane potential. These data show that energization of mitochondria increases the antioxidant potential of the TrxR2/Trx2 system and that inhibition of TrxR2 results in increased H(2)O(2) emission through a mechanism that is independent of changes in other redox couples.  相似文献   

13.
Sea urchin eggs contain a small molecular weight heat-stable factor that confers cyanide-resistant NAD(P)H-O2 oxidoreductase activity on ovoperoxidase (Turner, E., Somers, C. E., and Shapiro, B. M. (1985) J. Biol. Chem. 260, 13163-13171), the enzyme responsible for cross-linking the extracellular protein coat (fertilization membrane) of the egg. Here we report the isolation of the active cofactor and its identification by ultraviolet, NMR, and mass spectroscopy as a new sulfur-containing amino acid derivative, 1-methyl-alpha N,alpha N-dimethyl-4-thiohistidine, or ovothiol. Ovothiol reacts slowly with atmospheric oxygen or rapidly with micromolar concentrations of H2O2 to form ovothiol disulfide, which is inactive as a cofactor for the ovoperoxidase NAD(P)H oxidase. Reduced active ovothiol is regenerated by treatment with disulfide reductants and shows significant differences in its ultraviolet and NMR spectra from oxidized ovothiol. The oxidoreductase activity of the ovoperoxidase/ovothiol system is similar to that previously characterized with crude cofactor preparations; it is greatly enhanced by Mn2+ and is relatively insensitive to CN-, compared to the peroxidase activity of ovoperoxidase. The ovothiol content of eggs is estimated as 1.8 pmol/egg or an intracellular concentration of 6.8 mM. This concentration exceeds the amount of reductant needed for the CN-(-)insensitive oxygen consumption following fertilization and used in the production of H2O2 for fertilization membrane cross-linking. Whether ovothiol is involved in the cross-linking reaction, protects the egg from damage from H2O2, or has another role in development remains unclear.  相似文献   

14.
B Gmeiner  C Seelos 《FEBS letters》1989,255(2):395-397
Treatment of L-tyrosine in a peroxidase/H2O2 system results in the formation of dityrosine. However, the phosphoester derivative of tyrosine, O-phospho-L-tyrosine, was unable to form dityrosine even in mixtures with free L-tyrosine. Dephosphorylation of O-phospho-L-tyrosine by alkaline phosphatase followed by horseradish peroxidase/H2O2 treatment resulted in the formation of dityrosine. Our in vitro results indicate that phosphorylation/dephosphorylation of L-tyrosine may regulate dityrosine formation, and is supposed to play an important role in protein-protein interactions, i.e. cross-linking.  相似文献   

15.
16.
The apoproteins of the streptococcal NADH peroxidase (H2O2----2H2O) and NADH oxidase (O2----2H2O) stabilize the neutral forms of 6-hydroxy- and 6-mercapto-FAD, respectively. The redox behavior of the 6-hydroxy-FAD peroxidase closely mimics that of the native enzyme with both dithionite and NADH. Both oxidase and peroxidase preferentially stabilize the N(1)-protonated p-quinonoid species of 8-mercapto-FAD, and the 8-position of the bound flavin is accessible to solvent in both proteins. The 8-mercapto-FAD peroxidase yields an EH2 spectrum on reduction virtually identical to that seen with 8-mercapto-FAD glutathione reductase, but no distinct EH2.NADH form appears. The dramatic decreases in reactivity at the flavin 2- and 4-positions for both the peroxidase and the oxidase, assessed with the reconstituted 2- and 4-thio-FAD enzymes, suggest that these positions are buried by elements of both protein structures. Furthermore, reconstitution of the peroxidase with the higher potential 2- and 4-thioflavins yields enzyme forms which are fully reducible with 1.4 eq of NADH/FAD, giving rise to stable thio-FADH2.NAD+ complexes. This behavior closely mimics that of the native NADH oxidase and provides further evidence supporting the hypothesis that a major functional distinction between the two structurally related proteins is determined by the redox potential and/or NADH reactivity of the bound flavin coenzyme.  相似文献   

17.
A peroxidase is present in the chorion of Aedes aegypti eggs and catalyzes chorion protein cross-linking during chorion hardening, which is critical for egg survival in the environment. The unique chorion peroxidase (CPO) is a glycoprotein. This study deals with the N-glycosylation site, structures, and profile of CPO-associated oligosaccharides using mass spectrometric techniques and enzymatic digestion. CPO was isolated from chorion by solubilization and several chromatographic methods. Mono-saccharide composition was analyzed by HPLC with fluorescent detection. Our data revealed that carbohydrate (D-mannose, N-acetyl D-glucosamine, D-arabinose, N-acetyl D-galactosamine, and L-fucose) accounted for 2.24% of the CPO molecular weight. A single N-glycosylation site (Asn328-Cys- Thr) was identified by tryptic peptide mapping and de novo sequencing of native and PNGase A-deglycosylated CPO using matrix-assisted laser/desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The Asn328 was proven to be a major fully glycosylated site. Potential tryptic glycopeptides and profile were first assessed by MALDI/TOF/MS and then by precursor ion scanning during LC/MS/MS. The structures of N-linked oligosaccharides were elucidated from the MS/MS spectra of glycopeptides and exoglycosidase sequencing of PNGase A-released oligosaccharides. These CPO-associated oligosaccharides had dominant Man3GlcNAc2 and Man3 (Fuc) GlcNAc2 and high mannose-type structures (Man(4-8)GlcNAc2). The truncated structures, Man2GlcNAc2 and Man2 (Fuc) GlcNAc2, were also identified. Comparison of CPO activity and Stokes radius between native and deglycosylated CPO suggests that the N-linked oligosaccharides influence the enzyme activity by stabilizing its folded state.  相似文献   

18.
During the oxidation of NADH by horseradish peroxidase (HRP-Fe(3+)), superoxide (O(-)(2)) is produced, and HRP-Fe(3+) is converted to compound III. Superoxide dismutase inhibited both the generation of O(-)(2) and the formation of compound III. In contrast, catalase inhibited only the generation of O(-)(2). Under anaerobic conditions, the formation of compound III did not occur in the presence of NADH, thus indicating that compound III is produced via formation of a ternary complex consisting of HRP-Fe(3+), NADH and oxygen. The generation of hydroxyl radicals was dependent upon O(-)(2) and H(2)O(2) produced by HRP-Fe(3+)-NADH. The reaction of compound III with H(2)O(2) caused the formation of compound II without generation of hydroxyl radicals. Only HRP-Fe(3+)-NADH (but not K(+)O(-)(2) and xanthine oxidase-hypoxanthine) was able to induce the conversion of metmyoglobin to oxymyoglobin, thus suggesting the participation of a ternary complex made up of HRP-Fe(2+…)O(2)(…)NAD(.) (but not free O(-)(2) or H(2)O(2)) in the conversion of metmyoglobin to oxymyoglobin. It appears that a cyclic pathway is formed between HRP-Fe(3+), compound III and compound II in the presence of NADH under aerobic conditions, and a ternary complex plays the central roles in the generation of O(-)(2) and hydroxyl radicals.  相似文献   

19.
A simple in situ model of alamethicin-permeabilized isolated rat liver mitochondria was used to investigate the channeling of NADH between mitochondrial malate dehydrogenase (MDH) and NADH:ubiquinone oxidoreductase (complex I). Alamethicin-induced pores in the mitochondrial inner membrane allow effective transport of low molecular mass components such as NAD+/NADH but not soluble proteins. Permeabilized mitochondria demonstrate high rates of respiration in the presence of malate/glutamate and NAD+ due to coupled reaction between MDH and complex I. In the presence of pyruvate and lactate dehydrogenase, an extramitochondrial competitive NADH utilizing system, respiration of permeabilized mitochondria with malate/glutamate and NAD+ was completely abolished. These data are in agreement with the free diffusion of NADH and do not support the suggestion of direct channeling of NADH from MDH to complex I.  相似文献   

20.
The goal was to determine whether endogenous cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) preferentially uses NADPH or NADH in intact pulmonary arterial endothelial cells in culture. The approach was to manipulate the redox status of the NADH/NAD(+) and NADPH/NADP(+) redox pairs in the cytosolic compartment using treatment conditions targeting glycolysis and the pentose phosphate pathway alone or with lactate, and to evaluate the impact on the intact cell NQO1 activity. Cells were treated with 2-deoxyglucose, iodoacetate, or epiandrosterone in the absence or presence of lactate, NQO1 activity was measured in intact cells using duroquinone as the electron acceptor, and pyridine nucleotide redox status was measured in total cell KOH extracts by high-performance liquid chromatography. 2-Deoxyglucose decreased NADH/NAD(+) and NADPH/NADP(+) ratios by 59 and 50%, respectively, and intact cell NQO1 activity by 74%; lactate restored NADH/NAD(+), but not NADPH/NADP(+) or NQO1 activity. Iodoacetate decreased NADH/NAD(+) but had no detectable effect on NADPH/NADP(+) or NQO1 activity. Epiandrosterone decreased NQO1 activity by 67%, and although epiandrosterone alone did not alter the NADPH/NADP(+) or NADH/NAD(+) ratio, when the NQO1 electron acceptor duroquinone was also present, NADPH/NADP(+) decreased by 84% with no impact on NADH/NAD(+). Duroquinone alone also decreased NADPH/NADP(+) but not NADH/NAD(+). The results suggest that NQO1 activity is more tightly coupled to the redox status of the NADPH/NADP(+) than NADH/NAD(+) redox pair, and that NADPH is the endogenous NQO1 electron donor. Parallel studies of pulmonary endothelial transplasma membrane electron transport (TPMET), another redox process that draws reducing equivalents from the cytosol, confirmed previous observations of a correlation with the NADH/NAD(+) ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号