首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cultured Y-1 mouse adrenal tumor cells, which secrete 20--hydroxy-4-pregnen-3-one (20-DHP), were used to investigate the acute nonlethal effects of incremental cadmium chloride (CdCl2) concentrations on basal and maximally stimulated steroid secretion. In addition, cumulative CdCl2 effects during 4-hr incubations, effect reversibility, and viability were determined. Cells were incubated in 1 ml serum-free Eagle's Minimal Essential Medium (FMEM) with or without 0.5 IU (ca. 1.5 M) adrenocorticotropin (ACTH) in the presence or absence of CdCl2. Following incubation, cell viability was quantitated using trypan blue exclusion. The 20-DHP secreted into the experimental incubation medium was measured by radioimmunoassay. CdCl2 levels of 10.0 g/ml or greater significantly inhibited basal 30 min steroid secretion in a dose-dependent manner; ACTH-stimulated steroid secretion was significantly inhibited by levels 5.0 g/ml or greater. At least 80% of all control and stimulated cells in the presence or absence of cadmium ions excluded trypan blue. The reduction in ACTH-stimulated steroid secretion was greater than the reduction in basal steroid secretion at any cadmium concentration level. The CdCl2 concentration that reduced stimulated steroid hormone secretion by 50% (IC50) was 45.0 g/ml. Exposing Y-1 cells to either 5.0, 10.0, 45.0 or 500.0 g CdCl2/ml FMEM for periods ranging from 0.5 to 4 hr inhibited ACTH-stimulated steroid secretion in a time-dependent manner. After 30 min exposure to 10.0, 45.0 or 500.0 g CdCl2/ml FMEM with or without ACTH, cadmium inhibition was irreversible. When 5.0 g CdCl2/ml was used, basal and stimulated inhibition was reversible by reincubating in medium containing ACTH alone. The relatively greater cadmium effects on ACTH stimulated steroidogenesis might suggest that cadmium modulated the rate-limited transducing system between the ACTH plasma membrane receptor complex and cholesterol side-chain cleaving mitochondrial enzymes. However, cadmium influences on basal secretion indicated effects on the non-rate-limited steroidogenic pathway.Abbreviations ACTH adrenocorticotropin - ANOVA analysis of variance - CdCl2 cadmium chloride - Ci Curie - DNA deoxyribonucleic acid - FMEM serum-free Eagle's Minimum Essential Medium - HEPES N-2-hydroxyethylpiperazine-N-1,2-ethanesulfonic acid - IC50 concentration inhibiting stimulated steroid secretion by 50% - IU international unit - MEM Eagle's Minimum Essential Medium - RIA radioimmunoassay - RNA ribonucleic acid - SEM standard error of the mean - SMEM serum-containing Eagle's Minimum Essential Medium - 20-DHP 20--hydroxy-4-pregnen-3-one  相似文献   

2.
In previous studies cadmium chloride (CdCl2) nonlethally inhibited Y-1 mouse adrenal tumor cell 20-dihydroxyprogesterone (20DHP) secretion, affecting unstimulated and stimulated steroidogenic pathway sites differently. In addition, dibutyryl cAMP-stimulated 20DHP secretion was unaffected by CdCl2, while the site of the unstimulated effect was indirectly shown to involve steps between endogenous cholesterol utilization and 20-hydroxycholesterol association with mitochondrial cytochrome P450 side-chain cleavage enzyme. In the present study we determined CdCl2 effects on plasma membrane sites preceding pre-dbcAMP-stimulation of 20DHP secretion. Y-1 cells were incubated 0.5 h in medium with or without cadmium (using the concentration that inhibited adrenocorticotropin- (ACTH)-stimulated steroid secretion by 50%) together with exogenously added maximally stimulating concentrations of ACTH, cholera toxin, forskolin, or adenosine triphosphate Cholera toxin, forskolin and ATP bypass specific plasma membrane sites involved in the synthesis of intracellular cAMP and activate the steroid hormone biosynthetic pathway. Cadmium effects on ACTH-stimulated endogenous cAMP secretion were also examined. CdCl2 significantly reduced Y-1 cell 20DHP secretion following exposure to ACTH, cholera toxin, forskolin, and ATP; it also significantly decreased endogenous cAMP secretion into culture medium. These data may be interpreted to suggest that CdCl2 altered Y-1 cell regulation of adenyl cyclase activity, which reduced cAMP-activated cholesterol uptake by mitochondria as a consequence.Abbreviations ACTH adrenocorticotropin - ATP adenosine triphosphate - ANOVA analysis of variance - CdCl2 or Cd2+ cadmium chloride - cAMP cyclic 3,5-adenosine monophosphate - CTX cholera toxin - dbcAMP dibutyryl cAMP,N,O-dibutyryl-3,5-adenosine monophosphate - EGTA ethylene glycol bis tetraacetic acid - FMEM serum-free Eagle's Minimum Essential Medium with all other supplements - FSK forskolin - Hepes N-2-hydroxyethylpiperazine-N-1,2-ethanesulfonic acid - IC50' concentration inhibiting stimulated steroid secretion by 50% - IU international unit - MEM Eagle's Minimum Essential Medium - P450scc cytochrome P450 side-chain cleavage enzyme - PREG pregnenolone - PROG progesterone - SEM standard error of the mean - SMEM serum-containing Eagle's Minimum Essential Medium with supplements - 20DHP 20--hydroxy-4-pregnen-3-one  相似文献   

3.
The induction of apoptotic cell death by cadmium was investigated in eight mammalian cell lines. Great differences in the cytotoxicity of cadmium were found with different cell lines: Rat C6 glioma cells turned out to be most sensitive with an IC50-value of 0.7 M, while human A549 adenocarcinoma cells were relatively resistant with an IC50-value of 164 M CdCl2. The mode of cadmium-induced cellular death was identified to involve apoptotic DNA fragmentation in three cell lines, i.e., in C6 glioma cells, E367 neuroblastoma cells and NIH3T3 fibroblasts. In C6 glioma cells, this process was investigated in detail. Internucleosomal DNA-fragmentation occurred 40 h after application of CdCl2 and was concentration-dependent between 1–100 M CdCl2, followed by a decrease at higher concentrations due to necrotic processes. Apoptotic chromatin-condensation and nuclear fragmentation was observed 48 h after application of 2.5 M CdCl2. Furthermore, cadmium (1 M, 48 h) caused a breakdown of the mitochondrial membrane potential as shown by the decline in mitochondrial uptake of rhodamine 123. Also, we found an activation of caspase 9, a protease known to be activated in apoptotic processes following mitochondrial damage. Besides Cd2+, other toxic heavy metal ions (Hg2+, Pb2+, Ni2+, Fe2+, CrO4 2–, Cu2+ or Co2+) did not induce apoptotic DNA fragmentation in C6 cells. The only exception was Zn2+ which caused apotosis at high concentrations (>150 M) whereas it protected against cadmium-induced apoptosis at low concentrations (10–50 M).  相似文献   

4.
Recently, cadmium has been described to disturb ovarian function in rats. In this paper the direct influence of cadmium on steroid production of ovarian cellsin vitro has been studied. Granulosa and luteal cells were obtained from proestrous and pregnant rats, and incubated with 0, 5, 10, 20 or 40 g ml–1 CdCl2 in the presence or absence of 0.1–1000 ng ml–1 follicle stimulating hormone (FSH) or luteinizing hormone (LH) for 24 or 48 h. Production of progesterone (P) and 17-estradiol (E2) by granulosa and that of P by luteal cells were measured by radioimmunoassay. In FSH-stimulated granulosa cell cultures, 5 and 40 g ml–1 CdCl2 suppressed P accumulation to 65 and 10%, respectively; accumulation of E2 (at 5 g ml–1 CdCl2) decreased to 44%. P production of LH-supported luteal cells dropped to 86 and 66%, respectively, when 5 and 40 g ml–1 CdCl2 was added to the medium. No alteration in basal P accumulation occurred in granulosa and luteal cell cultures following incubations with 20 and 40 g ml–1 CdCl2, whereas basal E2 production of granulosa cells was markedly diminished. It is concluded that CdCl2 suppressing steroid synthesisin vitro exerts a direct influence on granulosa and luteal cell function.  相似文献   

5.
In previous studies cadmium chloride (CdCl2) nonlethally inhibited Y-1 adrenal mouse adrenal tumour cell 20-dihydroxyprogesterone (20DHP) secretion, affecting unstimulated and stimulated steroidogenic pathway sites differently. We studied CdCl2 effects on unstimulated steroidogenesis using Y-1 cells incubated 0.5 h in medium with or without cadmium (using the concentration that inhibited ACTH-stimulated steroid secretion by 50%). Exogenously added 20-hydroxycholesterol (20OHC), 22(R)-hydroxycholesterol (22OHC), 25-hydroxycholesterol (25OHC), pregnenolone (PREG), or progesterone (PROG) were used to bypass any rate-limited steroidogenic pathway sites that CdCl2 might inhibit. 25OHC is a biologically active nonpathway steroid, while 20OHC, 22OHC, PREG, and PROG are pathway steroids; each increased unstimulated 20DHP secretion nearly 10-fold. Although CdCl2 could not reduce dibutyryl cyclic AMP- (dbcAMP)-stimulated 20DHP secretion significantly, it did significantly reduce basal and 25OHC-induced 20DHP secretion 25% below untreated levels. When 20OHC, 22OHC, PREG, or PROG were incubated with unstimulated Y-1 cells, their synthesis into 20DHP was unaffected by cadmium. dbcAMP bypasses the plasma membrane enzyme complex that synthesizes intracellular cAMP during exogenous ACTH stimulation; dbcAMP was not inhibited by CdCl2. The rate-limited step accelerated by cAMP involves plasma membrane and/or cytoplasmic cholesterol transport to and through outer and inner mitochondrial membranes before the cholesterol is synthesized into pregnenolone by side-chain cleavage enzymes on the inner membrane matrix face. Little is known regarding the mechanisms controlling unstimulated steroidogenesis. Under unstimulated conditions the 25-, 20- and 22(R)-monohydroxyls of cholesterol facilitate plasma membrane, cytoplasm and inner and outer mitochondrial solubility, diffusion and/or transport to bypass rate-limited steps and augment unstimulated steroid synthesis. Since conversion of endogenous mitochondrial cholesterol and 25OHC, but not dbcAMP-mobilized cytoplasmic cholesterol, 20OHC or 22OHC conversion, to 20DHP is inhibited by CdCl2, this suggests that (a) control of mitochondrial cholesterol supplies is independent of the cAMP-regulated mitochondrial steps in the 20DHP steroid synthetic pathway, (b) CdCl2 specifically inhibited endogenous mitochondrial cholesterol and 25OHC utilization, (c) CdCl2 toxicity may affect adrenal, testicular, ovarian, and placental basal steroidogenic functions, and (d) 25OHC may be a useful compound to examine unstimulated steroid synthesisAbbreviations ACTH adrenocorticotropin - ANOVA analysis of variance - CdCl2 cadmium chloride - cAMP cyclic 3,5-adenosine monophosphate - DMSO dimethylsulfoxide - DNA deoxyribonucleic acid - FMEM serum-free Eagle's Minimum Essential Medium - Hepes N-2-hydroxyethyl-piperazine-N-1,2-ethanesulfonic acid - 20OHC 20-hydroxycholesterol - 22OHC 22(R)-hydroxycholesterol - 25OHC 25-hydroxycholesterol - IC50' concentration inhibiting stimulated steroid secretion by 50% - IU international unit - MEM Eagle's Minimum Essential Medium - P450scc cytochrome P450 side-chain cleavage enzyme - PREG pregnenolone - PROG progesterone - RNA ribonucleic acid - SEM standard error of the mean - SMEM serum-containing Eagle's Minimum Essential Medium - 20DHP 20-hydroxy-4-pregnen-3-one  相似文献   

6.
Summary Membrane-bounded spherical vesicles found in rat Sertoli cells have been examined quantitatively during the cycle of the seminiferous epithelium. Most of the vesicles were localized to the basal and columnar portions of the Sertoli cell cytoplasm. The thin lateral projections of the Sertoli cells contained very few vesicles. Morphometric analysis of the basal portion of the Sertoli cell cytoplasm revealed that the volume density (V v ) of the vesicles changed markedly during the cycle. The V v was at its minimum (0.036) at stage VII and maximum (0.117) at stages XI-I. The vesicles were also smaller at stage VII compared to the vesicles at stages IX-V. The stage-dependent difference in the size of the vesicles was found both in the basal and the columnar portions of the Sertoli cells. At stage VII some of the vesicles appeared to be elongated much like the tubular elements of the smooth endoplasmic reticulum (SER) from which they are probably derived. The stage-dependent differences in volume density and size of the Sertoli cell vesicles may be related to cyclic biochemical variations in the Sertoli cells, and are further indications of a variation in Sertoli cell function during the cycle of the seminiferous epithelium. Whether or not this is due to an internal cycle of the Sertoli cell or to influences from adjacent germ cells remains to be determined.  相似文献   

7.
8.
Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress   总被引:14,自引:2,他引:12  
Cadmium has recently been shown to induce apoptosis in C6 glioma cells via disruption of the mitochondrial membrane potential and subsequent caspase 9-activation. Here we show that both H2O2 and CdCl2 induced apoptotic DNA fragmentation in C6 cells. The employment of glutathione as an antioxidant prevented the induction of apoptotic DNA fragmentation by cadmium completely and catalase strongly reduced cadmium-induced DNA fragmentation suggesting that cadmium exerts its apoptotic effects at least partly via the production of H2O2. Apoptosis may be induced by cadmium indirectly through formation of oxidative stress, e.g., by inhibition of antioxidant enzymes. After incubation of C6 cells with cadmium for short times (up to 4 h), we analyzed the formation of intracellular reactive oxygen species and cellular lipid peroxidation. After 1 h of incubation with inreasing concentrations of CdCl2 (1–500 M), no increase in dichlorofluorescein fluorescence was found. At variance, lipid peroxidation was slightly elevated after 2 h incubation with cadmium (50–100 M). Furthermore, we analyzed the modulation of markers for oxidative stress after prolonged (24 h) exposure to cadmium. The intracellular glutathione content as measured using the fluorescent probe monobromobimane was decreased after incubation with CdCl2 (0.5–10 M) for 24 h. Furthermore, we measured the effect of cadmium on the level of oxidized DNA lesions (predominantly 8-hydroxyguanine) using the bacterial Fpg-DNA-repair protein. After 24 h of incubation with 5 M CdCl2 we found a sixfold increase in Fpg-sensitive DNA-lesions. We conclude that short time incubations with cadmium (up to 4 h) caused only slight or insignificant effects on the generation of reactive oxygen species (formation of thiobarbituric acid reactive substances, fluorescence of dichlorofluorescein), whereas incubation with this heavy metal for 24 h lead to a decrease in intracellular glutathione concentration and an increase in oxidative DNA-lesions. Our data demonstrate that cadmium as similar to H2O2 is a potent inducer of apoptosis in C6 cells. Even if cadmium unlike Fenton-type metals can not produce reactive oxygen species directly, the apoptotic effects of cadmium at least in part are mediated via induction of oxidative stress. Because both apoptosis and oxidative stress are thought to play important roles in neurodegenerative diseases, low concentrations of cadmium that initiate programmed cell death may lead to a selective cell death in distinct brain regions via generation of oxidative stress.  相似文献   

9.
In vitro and in vivo cadmium toxicity studies focus almost exclusively on CdCl2 effects. Only a few studies have used adrenocortical cells and tissue to determine cadmium salt effects during stress of adrenocorticotropin stimulation. Because several biologically relevant water-soluble cadmium salts exist, this study extended work with CdCl2 to evaluate the acute adrenocortical cell steroid secretory responses to non-lethal cadmium acetate (CdAc2) and CdSO4 4 concentrations. Control or ACTH-stimulated cultured Y-1 mouse adrenal tumor cells (ATCC) which secrete 20-dihydroprogesterone (20-DHP) were incubated for 0.5 h in serum-free medium (FMEM) with or without 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0 and 1000.0 µg CdAc2 or CdSO4/ml FMEM (1.9, 3.8, 19.0, 38.0, 190.0, 380.0 and 1900.0 µmol/L, respectively). For each salt, cell viability was measured at the end of the incubation using live cell trypan blue exclusion. In addition, cumulative CdAc2 effects during 4 h incubations and effect reversibility were determined for control and stimulated cells. After each experimental incubation, the 20-DHP secreted into the medium was determined by radioimmunoassay. Over 80% of all control or ACTH-stimulated cells were viable after incubation in the presence or absence of various CdAc2 or CdSO4 concentrations. Cadmium acetate and sulfate inhibited basal and ACTH-stimulated steroid secretion in a dose-dependent manner. For basal steroid secretion the CdAc2 concentration that first significantly inhibited was 0.5 µg/ml medium (1.9 µmol/L); stimulated secretion was significantly inhibited beginning at 5.0 µg/ml (19.0 µmol/L) and the concentration reducing stimulated 20-DHP secretion by 50% (IC50) was 5.6 µg/ml (21.3 µmol/L). Similarly, the first CdSO4 concentration to significantly inhibit basal and ACTH-stimulated steroid secretion was 10.0 µg/ml medium (39.0 µmol/L); the IC50 was 7.8 µg/ml (29.8 µmol/L). Except that basally secreting Cd2+ 2+-treated cells almost doubled 20-DHP secretion after Cd2+ removal and subsequent incubation with ACTH, all basal and ACTH-stimulated steroid secretion was irreversibly inhibited by every CdAc2 concentration. All CdAc2 concentrations initiated and maintained cumulative inhibitory effects on basal and ACTH-stimulated steroid secretion over a 4 h period. Reversibility and cumulative CdSO4 treatment studies were not conducted. Based on the results from the present studies, both CdAc2 and CdSO4 appeared to incrementally inhibit control and ACTH-stimulated steroidogenesis without affecting cell viability and to be more potent inhibitors of adrenocortical cell steroid secretion than CdCl2. Finally, CdAc2 effects on control and stimulated cells were cumulative and irreversible.  相似文献   

10.
Cadmium toxicity of rice leaves is mediated through lipid peroxidation   总被引:8,自引:0,他引:8  
Oxidative stress, in relation to toxicity of detached rice leaves,caused by excess cadmium was investigated. Cd content inCdCl2-treated detached rice leaves increased with increasingdurationof incubation in the light. Cd toxicity was followed by measuring the decreasein chlorophyll and protein. CdCl2 was effective in inducing toxicityand increasing lipid peroxidation of detached rice leaves under both light anddark conditions. These effects were also observed in rice leaves treated withCdSO4, indicating that the toxicity was indeed attributed to cadmiumions. Superoxide dismutase (SOD), ascorbate peroxidase (APOD), and glutathionereductase (GR) activities were reduced by excess CdCl2 in the light.The changes in catalase and peroxidase activities were observed inCdCl2-treated rice leaves after the occurrence of toxicity in thelight. Free radical scavengers reduced CdCl2-induced toxicity and atthe same time reduced CdCl2-induced lipid peroxidation and restoredCdCl2-decreased activities of SOD, APOD, and GR in the light. Metalchelators (2,2-bipyridine and 1,10-phenanthroline) reducedCdCl2 toxicity in rice leaves in the light. The reduction ofCdCl2 toxicity by 2,2-bipyridine (BP) is closely associatedwith a decrease in lipid peroxidation and an increase in activities ofantioxidative enzymes. Furthermore, BP-reduced toxicity of detached riceleaves,induced by CdCl2, was reversed by adding Fe2+ orCu2+, but not by Mn2+ or Mg2+.Reduction of CdCl2 toxicity by BP is most likely mediated throughchelation of iron. It seems that toxicity induced by CdCl2 mayrequire the participation of iron.  相似文献   

11.
Cucumber (Cucumis sativus L.) cells from suspension culture were selected for their ability to grow and divide rapidly in toxic concentration of cadmium. As a result of selection a cell suspension tolerant to 100 M cadmium chloride (CdCl2) was initiated. The selected tolerant line exhibited stable and repeatable increase in fresh and dry weight of cells in the presence of cadmium. The accumulated level of phytochelatins in cadmium sensitive (unselected) and tolerant cell line was measured by high performance liquid chromatography (HPLC) after 3, 24 h and 5 days of cadmium treatment. It was shown that in both cell lines Cd induced accumulation of phytochelatins and simultaneous glutathione depletion occurred. No distinct changes were found after 3 and 24 h of cadmium treatment whereas after 5 days of exposure to the metal, the level of phytochelatins was two times higher in the sensitive cell line as compared to the tolerant one. The accumulation of phytochelatins was correlated with cadmium concentration that increased in both cell lines during the course of cell exposure to metal. However, the level of cadmium was always lower in the tolerant cell line. The results showed no direct correlation between the tolerance of cucumber cells to Cd and the accumulated level of phytochelatins. Other mechanisms responsible for the increased tolerance of cucumber cells exposed to Cd are discussed.  相似文献   

12.
The present study evaluates the growth response of two strains of filamentous fungi; a Fusarium sp. and Alternaria tenuis, grown on both solid and liquid Czapek Dox medium amended with different concentrations of CdCl2. Colony extension and the mycelial dry weight of both fungi were significantly inhibited by high concentrations of cadmium. Extended lag phases and low growth rates resulted from cadmium administration. Cadmium drastically affected fungal morphogenesis by the production of stunted sterile thick mycelial filaments of the Fusarium sp. and chains of uncharacterized swellings instead of conidia in A. tenuis. Experiments showed that cadmium accumulation by the Fusarium sp. grown in liquid medium was a concentration dependent, and over the incubation time it displayed a plateau pattern. The cells grown on medium containing 0.25 mmol l–1 CdCl2 accumulated up to 89 ± 12 mol Cd (gm dw)–1 after two days, falling to 29 ± 10 mol Cd (gm dw)–1 after five days. At 0.5 mmol l–1 CdCl2 treatment the maximum cellular cadmium content was 132 ± 14 mol (gm dw)–1, attained after 3 days, and decreased to 98 ± 9 mol (gm dw)–1 at the end of the incubation time. There was a simultaneous marked drop in cadmium content and pH of the growth medium during the first few days. The presence of cadmium markedly altered the cellular essential cations; K+ and Mg2+ being decreased while Na+ increased during the growth period. Such findings resulted a reverse pattern of cellular Na+/K+ ratio for cells grown on cadmium-containing medium in respect to the control treatment. The results are discussed in relation to a further dimension of cadmium effects that might reflect its toxicity, as well as the implication of cadmium extrusion for tolerance during fungal growth.  相似文献   

13.
Drosophila cells were treated with increasing concentrations of CdCl2 (10 μM-1 mM). The toxicity of cadmium, as observed by cellular death and the ability of the cells to survive after removal of CdCl2, depended on concentration and duration of treatment. The overall synthesis of protein, measured by incorporation of [35S]methionine, decreased. It fell to 66% of the controls after 24 h of exposition to 50 μM CdCl2 and to 29% after 48 h. We showed that cadmium induced the synthesis of ‘heat shock proteins’ (hsps), which started after 6 h and was maximal after 24 h of 50–100 μM CdCl2 treatment.  相似文献   

14.
In this study, we analyzed how distinct glycolysis inhibitors influenced the redox status of retinal cells, used as a neuronal model. Three different approaches were used to inhibit glycolysis: the cells were submitted to iodoacetic acid (IAA), an inhibitor of glyceraldehyde 3-phosphate dehydrogenase, to 2-deoxy-glucose (DG) in glucose-free medium, which was used as a substitute of glucose, or in the absence of glucose. The redox status of the cells was evaluated by determining the reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide). By the analysis of dose-response curves of MTT reduction, IAA showed values of IC50 = 7.02 × 10–5 M, whereas DG showed values of IC50 = 7.42 × 10–4 M. Upon 30 min-incubation, glucose deprivation, per se, did not significantly affect MTT reduction. We also evaluated the reduction of MTT as an indicator of cell injury by exposing the cells to 100 M glutamate during the decrement of glycolysis function. In the presence of glutamate, for 2 h, there was a decrease in MTT reduction, which was potentiated in the presence of DG (10-20% decrease), in the presence of IAA (about 30% decrease) or in glucose-free medium (about 30% decrease). Major changes observed by the MTT assay, upon exposure to glutamate, indicative of changes in the redox status of retinal cells, were concomitant with variations in intracellular ATP. Under glucose deprivation, endogenous ATP decreased significantly from 38.9 ± 4.4 to 13.3 ± 0.7 nmol/mg protein after exposure to 100 M glutamate. The results support a different vulnerability of retinal cells after being exposed to distinct forms of glycolysis inhibition.  相似文献   

15.
Cell suspension cultures of tomato (Lycopersicon esculentum) adapted to growing continuously in the presence of 0.1 mM CdCl2 and accumulated phytochelatins (PCs, poly(-Glu-Cys)n-Gly). The highest level of PCs was measured 4 days after inoculation and coincided with the peak of cellular cadmium concentration. At this time there was an 8-fold molar excess of PC (-Glu-Cys) over Cd. PCs could not be detected after 12 days when the cellular concentration of cadmium was 0.2 mM. These results indicate that PCs are produced in excess of that required to bind the cellular cadmium in the early stage of the culture period followed by degradation of PCs during the stationary phase. Adaptation to 0.1 mM CdCl2 did not increase tolerance to higher concentrations of cadmium when compared with control cells, but did significantly enhance tolerance to both anaerobiosis and heat shock. Exposure of tomato cells to 0.1 mM CdCl2 resulted in several changes in proteins synthesized.  相似文献   

16.
In previous studies, nonlethal CdCl2 concentrations apparently inhibited basal Y-1 mouse adrenal tumor cell endogenous mitochondrial cholesterol conversion to pregnenolone. In addition, CdCl2 inhibited all agents stimulating both plasma membrane-dependent cAMP synthesis and 20-hydroxy-4-pregnen-3-one (20DHP) secretion. Bypassing the plasma membrane using dibutyryl-cAMP (dbcAMP) stimulated cytoplasmic cholesterol metabolism and 20DHP secretion in the presence of CdCl2. Since CdCl2 competed at metabolic steps requiring Ca2+ in other tissues, experiments were designed to examine Cd2+ competition with Ca2+ during steroidogenesis. Sets of cells incubated with either medium or adrenocorticotropin (ACTH) with or without CdCl2 were also treated with 0, 1.0, 5.0 or 10.0 mmol/L CaCl2 in the presence or absence of EGTA, a relatively specific Ca2+, but not Cd2+, chelating agent. Another experimental cell set incubated with either medium or ACTH, with or without CdCl2, was treated with or without 1 mmol/L A23187, an ionophore specifically facilitating extracellular Ca2+ transfer across plasma membranes. Besides determining Ca2+ involvement in steroidogenesis using steroid secretion as an endpoint, we directly measured Ca2+ concentrations using intracellular fura-2 fluorescence. Following loading with 2 mol/L fura-2, cells remained untreated or medium was infused with CdCl2, ACTH, ACTH/CdCl2 or ACTH followed after 50 s by CdCl2. Using Ca2+-supplemented media, we observed that Cd2+ inhibition of ACTH-stimulated 20DHP secretion was completely reversed. Standard Ca2+-containing medium supplemented with Ca2+ also enhanced maximally stimulated 20DHP secretion by ACTH. 20DHP secretion by ACTH-treated and ACTH/Cd2+-treated cells was only reduced by EGTA, when Ca2+ was not supplemented. The ionophore A23187 increased basal and ACTH-stimulated 20DHP secretion by Cd2+-treated cells, suggesting that extracellular Ca2+ resources may compete against Cd2+ effects on plasma membrane cAMP synthesis and on basal cholesterol metabolism by mitochondria. No time-dependent change in Ca2+ concentrations occurred within untreated cell suspensions. ACTH stimulation caused a 25 s burst in Ca2+ concentrations before returning to basal, steady-state levels. Cd2+ also stimulated intracellular fura-2 fluorescence. Untreated cell suspensions infused with Cd2+ exhibited a continuous rise in intracellular fluorescence. ACTH/CdCl2-treated cells exhibited a hyperbolic rise in intracellular fluorescence over the 300 s study period. Cells treated with Cd2+ 50 s after ACTH treatment initially exhibited the 25 s fluorescence burst followed by a Cd2+-induced hyperbolic rise in intracellular Cd2+. These fluorescence measurements suggested that cytoplasmic Ca2+ changes do not appear to be necessary for basal 20DHP synthesis and secretion; only a 25 s burst in intracellular Ca2+ is necessary to a slightly higher plateau level for stimulated 20DHP synthesis and secretion. Cd2+ freely enters the cell under basal conditions and Cd2+ entry is accelerated by ACTH stimulation. Data were consistent with Ca2+ being required for optimal stimulated steroid production and Cd2+ probably competing with Ca2+ during basal mitochondrial cholesterol metabolism and plasma membrane ACTH-stimulated cAMP generation.  相似文献   

17.
Summary As revealed by light microscopical investigations the human Sertoli cell presents different appearances according to the pattern of infranuclear cytoplasmic inclusions. Although two or three stages of spermatogenesis are seen in a single cross section of a seminiferous tubule the Sertoli cells all show virtually the same features in such a cross sectioned tubule.The different appearances are also evident under the electron microscope. Although no obvious correlation was found with the stages of spermatogenesis in the seminiferous epithelium, the Sertoli cell appearances described here may be assumed to represent different metabolic situations.Other features of Sertoli cell ultrastructure are discussed such as the presence of residual bodies in the apical cytoplasm, glycogen-rich areas protruding towards the tubular lumen or the extracellular space, and membrane bound, round structures, found between the membranes of the smooth endoplasmic reticulum and resembling the microbodies of steroid producing cells.Presented in part at the 69th Versammlung der Anatomischen Gesellschaft, Kiel, 1974.  相似文献   

18.
Application of different concentrations of cadmium [5, 10, 15, 25 and 50 g(CdCl2) g–1(soil d.m.)] markedly affected leaves of Cajanus cajan (Linn.) Huth. Due to increased Cd content in leaves, stomatal density and size on abaxial epidermis, and the size of stomatal aperture and length and density of trichomes on both leaf epidermes decreased significantly in the treated plants. Net photosynthetic rate and stomatal conductance were reduced significantly at each concentration of cadmium, whereas reduction in intercellular carbon dioxide concentration was significant at 10 g Cd onwards. The contents of chlorophyll a, chlorophyll b and carotenoids were relatively low during early stages of plant development under the effect of Cd. Nitrate content, nitrate reductase activity and protein content were also lower in treated plants, compared with control.  相似文献   

19.

Background

Plant secondary metabolites are possess several biological activities such as anti-mutagenic, anti-carcinogenic, anti-aging, etc. Cell suspension culture is one of the most effective systems to produce secondary metabolites. It is possible to increase the phenolic compounds and tocopherols by using cell suspensions. Studies on tocopherols production by cell suspension cultures are seldom and generally focused on seed oil plants. Although fresh grape, grape seed, pomace and grape seed oil had tocopherols, with our best knowledge, there is no research on tocopherol accumulation in the grape cell suspension cultures. In this study, it was aimed to determine the effects of cadmium chloride treatments on secondary metabolite production in cell suspension cultures of grapevine. Cell suspensions initiated from callus belonging to petiole tissue was used as a plant material. Cadmium chloride was applied to cell suspension cultures in different concentration (1.0 mM and 1.5 mM) to enhance secondary metabolite (total phenolics, total flavanols, total flavonols, trans-resveratrol, and α-, β-, γ- δ-tocopherols) production. Cells were harvested at two days intervals until the 6th day of cultures. Amounts of total phenolics, total flavanols and total flavonols; trans-resveratrol and tocopherols (α-, β-, γ- and δ-tocopherols) and dry cell weights were determined in the harvested cells.

Results

Phenolic contents were significantly affected by the sampling time and cadmium concentrations. The highest values of total phenolic (168.82 mg/100 g), total flavanol (15.94 mg/100 g), total flavonol (14.73 mg/100 g) and trans-resveratrol (490.76 μg/100 g) were found in cells treated with 1.0 mM CdCl2 and harvested at day 2. Contents of tocopherols in the cells cultured in the presence of 1.0 mM CdCl2 gradually increased during the culture period and the highest values of α, β and γ tocopherols (145.61, 25.52 and 18.56 μg/100 g) were detected in the cell cultures collected at day 6.

Conclusions

As a conclusion, secondary metabolite contents were increased by cadmium chloride application and sampling time, while dry cell weights was reduced by cadmium chloride treatments.  相似文献   

20.
The objective of the present study is to identify the possible regulatory role of trehalose (Tre) against cadmium chloride (CdCl2)-induced endothelial cell dysfunction. To screen the dose-dependent effect of both Tre and CdCl2, a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed. Interestingly, MTT assay results have shown that co-incubation of Tre (1 mM) with CdCl2 significantly decreased the CdCl2 (5 µM) cytotoxicity. Nitric oxide (NO) measurement using Griess assay and 4-amino-5-methylamino-2ʹ,7ʹ-difluorofluorescein fluorescence probe results have shown that CdCl2 decreases NO production in endothelial cells. Western blotting analysis results showed that CdCl2 decreases endothelial nitric oxide synthase (eNOS) and phospho endothelial nitric oxide synthase (peNOS) expression. The present study results have also observed that CdCl2 treatment increases reactive oxygen species (ROS) production. However, combination treatment (Tre + CdCl2) could restore the NO production in CdCl2-treated cells. In addition, combination treatment could also restore eNOS and peNOS expression in endothelial cells. Moreover, Tre treatment was found to decrease CdCl2-induced ROS production. Collectively, the present study results demonstrate that Tre possesses a significant protective action against CdCl2-mediated endothelial dysfunction by increasing NO production, eNOS and peNOS expression, and by decreasing oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号