共查询到20条相似文献,搜索用时 15 毫秒
1.
Crayfish is a common model animal for different experimental purposes. However, the lack of information about the genetic properties of the animal limits its use in comparison to other model animals. In the present study, a putative crayfish sodium/calcium exchanger gene has firstly been cloned in ganglia cDNA samples by conducting a series of PCR experiments, where a set of degenerate and specific primers and RACE method were used. The complete sequence is 2955 bp, and the ORF is 2718 bp in length. Molecular properties of the calculated peptide were similar to the sodium/calcium exchangers reported in the other species. Analysis of the qPCR data indicated that the putative gene has the highest expression level in the ganglia. However, an apparently elevated level of expression is observed in highly active tissues like heart, muscle and intestine, while the least expression level was observed in the stomach samples. It was proposed that the cloned gene may code the sodium/calcium exchanger protein in the crayfish. 相似文献
2.
Evidence for a sodium/calcium exchanger and voltage-dependent calcium channels in adipocytes 总被引:1,自引:0,他引:1
The objective of these studies is to identify and characterize Ca2+-transport systems that may be of potential importance in the action of Ca2+-mobilizing hormones in the adipocyte. Using the Ca2+-sensitive photoprotein, aequorin, [Ca2+]i was estimated to be 0.15 microM, assuming an intracellular [Mg2+] of 1 mM. Substitution of Na+ with choline+ caused a transient increase in [Ca2+]i which was inversely related to extracellular [Na+], consistent with operation of a mediated Na+-Ca2+ exchange system. The stoichiometry was 3Na+:Ca2+. Elevation of extracellular K+ caused an increase in [Ca2+]i that was blocked by the Ca2+ channel antagonist, diltiazem, by omitting extracellular Ca2+, or by substituting Sr2+ for Ca2+. These findings indicate the presence of an Na+-Ca2+ exchanger and voltage-sensitive Ca2+ channels in adipocytes. 相似文献
3.
Receptors for biogenic amines such as dopamine, serotonin and epinephrine belong to the family of receptors that interact with G proteins and share a putative seven transmembrane domain structure. Using a strategy based on nucleotide sequence homology between the corresponding genes, we have isolated Drosophila cDNA clones encoding a new member of the G protein-coupled receptor family. This protein exhibits highest homology to the human alpha 2 adrenergic receptors, the human 5HT1A receptor and a recently cloned Drosophila serotonin receptor. The corresponding mRNA is found predominantly in adult Drosophila heads. Membranes from mammalian cells expressing this receptor displayed high affinity binding sites for [3H]yohimbine, an alpha 2 adrenergic receptor antagonist (Kd = 4.45 x 10(-9) M). Tyramine was the most efficient of the putative Drosophila neurotransmitters at displacing [3H]yohimbine binding (EC50 = 1.25 x 10(-6) M). Furthermore tyramine induced an inhibition of adenylate cyclase activity in NIH 3T3 cells expressing this receptor. The Drosophila tyramine receptor that we have isolated might therefore be an invertebrate equivalent of the mammalian alpha 2 adrenergic receptors. 相似文献
4.
Moonga BS Davidson R Sun L Adebanjo OA Moser J Abedin M Zaidi N Huang CL Zaidi M 《Biochemical and biophysical research communications》2001,283(4):770-775
We provide the first demonstration for a Na+/Ca2+ exchanger, NCX-1, in the osteoclast. We speculate that by using Na+ exchange, NCX-1 couples H+ extrusion with Ca2+ fluxes during bone resorption. Microspectrofluorimetry of fura-2-loaded osteoclasts revealed a rapid and sustained, but reversible, cytosolic Ca2+ elevation upon Na+ withdrawal. This elevation was abolished by the cytosolic introduction (by gentle permeabilization) of a highly specific Na+/Ca2+ exchange inhibitor peptide, XIP, but not its inactive analogue, sXIP. Confocal microscopy revealed intense plasma membrane immunofluorescence with an isoform-specific monoclonal anti-NCX-1 antibody applied to gently permeabilized osteoclasts. Electrophysiological studies using excised outside-in membrane patches showed a low-conductance, Na+-selective, dichlorobenzamil-sensitive, amiloride-insensitive channel that we tentatively assigned as being an NCX. Finally, to examine for physiological relevance, an osteoclast resorption (pit) assay was performed. There was a dramatic reduction of bone resorption following NCX-1 inhibition by dichlorobenzamil and XIP (but not with S-XIP). Together, the results suggest that a functional NCX, likely NCX-1, is involved in the regulation of osteoclast cytosolic Ca2+ and bone resorption. 相似文献
5.
Pepperell JR Kommineni K Buradagunta S Smith PJ Keefe DL 《Biology of reproduction》1999,60(5):1137-1143
Regulation of cytoplasmic free calcium concentration ([Ca2+)]i) is a key factor for maintenance of viability of cells, including oocytes. Indeed, during fertilization of an ovum, [Ca2+]i is known to undergo oscillations, but it is unknown how basal [Ca2+]i or calcium oscillations are regulated. In the present study we investigated the role of the plasma membrane in regulating [Ca2+]i of metaphase II-arrested mouse oocytes (ova). Ova were collected from B6C3F1 mice treated with eCG (10 IU) and hCG (5 IU), and intracellular calcium was determined by means of fura-2. Extracellular calcium flux across the zona pellucida was detected noninvasively by a calcium ion-selective, self-referencing microelectrode that was positioned by a computer-controlled micromanipulator. Under basal conditions ova exhibited a calcium net efflux of 20.6 +/- 5.2 fmol/cm2 per sec (n = 69). Treatment of ova with ethanol (7%) or thapsigargin (25 nM-2.5 microM) transiently increased intracellular calcium and stimulated calcium efflux that paralleled levels of [Ca2+]i. The presence of a Na+/Ca2+ exchanger was indicated by experiments employing both bepridil, an inhibitor of Na+/Ca2+ exchange, and sodium-depleted media. In the presence of bepridil, a net influx of calcium was revealed across the zona pellucida, which was reflected by an increase in the [Ca2+]i. In addition, replenishment of extracellular sodium to ova that had been incubated in sodium-depleted media induced a large calcium efflux, consistent with the actions of Na+/Ca2+ exchange. Sodium/calcium exchange in mouse ova may be an important mechanism that regulates [Ca2+]i. 相似文献
6.
Calcium is a critical mediator of many intracellular processes in eukaryotic cells. In the obligate intracellular parasite Toxoplasma gondii, for example, a rise in [Ca2+] is associated with significant morphological changes and rapid egress from host cells. To understand the mechanisms behind such dramatic effects, we isolated a mutant that is altered in its responses to the Ca2+ ionophore A23187 and found the affected gene encodes a homologue of Na+/H+ exchangers (NHEs) located on the parasite's plasma membrane. We show that in the absence of TgNHE1, Toxoplasma is resistant to ionophore-induced egress and extracellular death and amiloride-induced proton efflux inhibition. In addition, the mutant has increased levels of intracellular Ca2+, which explains its decreased sensitivity to A23187. These results provide direct genetic evidence of a role for NHE1 in Ca2+ homeostasis and important insight into how this ubiquitous pathogen senses and responds to changes in its environment. 相似文献
7.
O Shaul D W Hilgemann J de-Almeida-Engler M Van Montagu D Inz G Galili 《The EMBO journal》1999,18(14):3973-3980
Cellular functions require adequate homeostasis of several divalent metal cations, including Mg(2+) and Zn(2+). Mg(2+), the most abundant free divalent cytoplasmic cation, is essential for many enzymatic reactions, while Zn(2+) is a structural constituent of various enzymes. Multicellular organisms have to balance not only the intake of Mg(2+) and Zn(2+), but also the distribution of these ions to various organs. To date, genes encoding Mg(2+) transport proteins have not been cloned from any multicellular organism. We report here the cloning and characterization of an Arabidopsis thaliana transporter, designated AtMHX, which is localized in the vacuolar membrane and functions as an electrogenic exchanger of protons with Mg(2+) and Zn(2+) ions. Functional homologs of AtMHX have not been cloned from any organism. Ectopic overexpression of AtMHX in transgenic tobacco plants render them sensitive to growth on media containing elevated levels of Mg(2+) or Zn(2+), but does not affect the total amounts of these minerals in shoots of the transgenic plants. AtMHX mRNA is mainly found at the vascular cylinder, and a large proportion of the mRNA is localized in close association with the xylem tracheary elements. This localization suggests that AtMHX may control the partitioning of Mg(2+) and Zn(2+) between the various plant organs. 相似文献
8.
9.
The aim of this study was to analyze the relationship of the Na+/Ca2+ exchanger, cytosolic calcium, and chloride to the transepithelial transport of sodium in isolated frog skin. Sodium transport was measured as amiloride-inhibitable short circuit current (SCC). We studied the effect of variations in the concentrations of external chloride and of the manipulation of calcium on sensitive amiloride SCC. Modifications in the movement of Ca2+ were induced by an ionophore, A23187, and a Ca2+ channel blocker, nifedipine. Calcium ionophore A23187 (5 and 20 microM), in a normal Ringer's solution, increased SCC and transepithelial potential difference (PD). In contrast, nifedipine (20 microM) reduced SCC and PD. The role of the Na+/Ca2+ exchanger was studied using dichlorobenzamil (DCB, 50 microM) and quinacrine (1 mM), inhibitors of this exchanger. They selectively increased SCC and PD on the mucosal side of the skin, with no effect on the serosal side. This response occurred only in the presence of extracellular calcium. Replacement of NaCl by sodium methanesulfonate or the addition of furosemide (1 mM) at the serosal compartment, decreased basal SCC and PD and blocked the response to A23187 and the mucosal effect of DCB and quinacrine. These results suggest the presence of an Na+/Ca2+ exchanger located on the mucosal side of the frog skin, which participates in the transepithelial sodium transport. The action of this exchanger may be modulated by external chloride and calcium. J. Exp. Zool. 289:23-32, 2001. 相似文献
10.
Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. 总被引:1,自引:0,他引:1
M Johansson A R van Rompay B Degrève J Balzarini A Karlsson 《The Journal of biological chemistry》1999,274(34):23814-23819
A Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) was reported to phosphorylate all four natural deoxyribonucleosides as well as several nucleoside analogs (Munch-Petersen, B., Piskur, J., and Sondergaard, L. (1998) J. Biol. Chem. 273, 3926-3931). The broad substrate specificity of this enzyme together with a high catalytic rate makes it unique among the nucleoside kinases. We have in the present study cloned the Dm-dNK cDNA, expressed the 29-kDa protein in Escherichia coli, and characterized the recombinant enzyme for the phosphorylation of nucleosides and clinically important nucleoside analogs. The recombinant enzyme preferentially phosphorylated the pyrimidine nucleosides dThd, dCyd, and dUrd, but phosphorylation of the purine nucleosides dAdo and dGuo was also efficiently catalyzed. Dm-dNK is closely related to human and herpes simplex virus deoxyribonucleoside kinases. The highest level of sequence similarity was noted with human mitochondrial thymidine kinase 2, and these enzymes also share many substrates. The cDNA cloning and characterization of Dm-dNK will be the basis for studies on the use of this multisubstrate nucleoside kinase as a suicide gene in combined gene/chemotherapy of cancer. 相似文献
11.
Johannes Noé Erwin Tareilus Ingrid Boekhoff Heinz Breer 《Neurochemistry international》1997,30(6):100
The chemo-electrical transduction process in olfactory neurons is accompanied by a rapid and transient increase in intracellular calcium concentrations. The notion that Na+/Ca2+ exchanger activities may play a major role in extruding calcium ions out of the cell and maintaining Ca2+ homeostasis in olfactory receptor cells was assessed by means of laser scanning confocal microscopy in combination with the fluorescent indicators Fluo-3 and Fura-Red. The data indicate that high exchanger acitivity, which was inhibited by amiloride derivatives, is located in the dendritic knob and probably in the olfactory cilia. This result was supported by experiments using specific antiserum raised against retinal Na+/Ca2+ exchanger protein which labelled an immunoreactive protein of 230 kDa in Western blots from olfactory tissue and strongly stained the ciliary layer of the olfactory epithelium. 相似文献
12.
The Na(+)-driven Cl(-)/HCO(3)(-) exchanger is an important regulator of intracellular pH in various cells, but its molecular basis has not been determined. We show here the primary structure, tissue distribution, and functional characterization of Na(+)-driven chloride/bicarbonate exchanger (designated NCBE) cloned from the insulin-secreting cell line MIN6 cDNA library. The NCBE protein consists of 1088 amino acids having 74, 72, and 55% amino acid identity to the human skeletal muscle, rat smooth muscle, and human kidney sodium bicarbonate cotransporter, respectively. The protein has 10 putative membrane-spanning regions. NCBE mRNA is expressed at high levels in the brain and the mouse insulinoma cell line MIN6 and at low levels in the pituitary, testis, kidney, and ileum. Functional analyses of the NCBE protein expressed in Xenopus laevis oocytes and HEK293 cells demonstrate that it transports extracellular Na(+) and HCO(3)(-) into cells in exchange for intracellular Cl(-) and H(+), thus raising the intracellular pH. Thus, we conclude that NCBE is a Na(+)-driven Cl(-)/HCO(3)(-) exchanger that regulates intracellular pH in native cells. 相似文献
13.
The sodium/hydrogen exchanger: a possible mediator of immunity 总被引:2,自引:0,他引:2
De Vito P 《Cellular immunology》2006,240(2):69-85
Immune cells such as macrophages and neutrophils provide the first line of defence of the immune system using phagocytosis, cytokine and chemokine synthesis and release, as well as Reactive Oxygen Species (ROS) generation. Many of these functions are positively coupled with cytoplasmic pH (pHi) and/or phagosomal pH (pHp) modification; an increase in pHi represents an important signal for cytokine and chemokine release, whereas a decrease in pHp can induce an efficient antigen presentation. However, the relationship between pHi and ROS generation is not well understood. In immune cells two main transport systems have been shown to regulate pHi: the Na+/H+ Exchanger (NHE) and the plasmalemmal V-type H+ ATPase. NHE is a family of proteins which exchange Na+ for H+ according to their concentration gradients in an electroneutral manner. The exchanger also plays a key role in several other cellular functions including proliferation, differentiation, apoptosis, migration, and cytoskeletal organization. Since not much is known on the relationship between NHE and immunity, this review outlines the contribution of NHE to different aspects of innate and adaptive immune responses such as phagosomal acidification, NADPH oxidase activation and ROS generation, cytokine and chemokine release as well as T cell apoptosis. The possibility that several pro-inflammatory diseases may be modulated by NHE activity is evaluated. 相似文献
14.
Cloning and characterization of variable-sized gypsy mobile elements in Drosophila melanogaster 总被引:3,自引:0,他引:3
A cosmid genomic library from a known gypsy-induced forked mutation, f1, was screened by 32P-labeled gypsy transposable element. Of more than 250 positive clones we randomly selected 21 for in situ hybridization to wild-type polytene chromosomes. Two clones hybridized to region 15F on the X-chromosome, the cytological position of forked. A third clone hybridized to at least 17 sites on the chromosomes indicating the presence of repetitive sequences in the gypsy flanking DNA. All clones labeled the centromeric regions heavily. Ten clones, including the two hybridizing at 15F, were chosen for further analysis, and restriction mapping allowed us to place them into three groups: (1) full-length, (2) slightly diverging, and (3) highly diverging gypsy elements. Group (2) is missing the XbaI site in both their long terminal repeats (LTRs) as well as the middle HindIII site; four of these gypsy elements also have a approximately 100-bp deletion at the 5' LTR. The group (3) gypsy transposons are missing one LTR and also have highly diverging DNA sequences. The restriction analyses further imply that most of these different gypsy elements are present in more than one copy in the genome of the f1 stock used in this study. The results raise intriguing questions regarding the significance of transposable elements in evolution and biological functions. 相似文献
15.
16.
17.
We cloned cDNA encoding Drosophila DNA topoisomerase III. The top3 cDNA encodes an 875-amino acid protein, which is nearly 60% identical to mammalian topoisomerase IIIbeta enzymes. Similarity between the Drosophila protein and the topoisomerase IIIbetas is particularly striking in the carboxyl-terminal region, where all contain eight highly conserved CXXC motifs not found in other topoisomerase III enzymes. We therefore propose the Drosophila protein is a member of the beta-subfamily of topoisomerase III enzymes. The top3beta gene is a single-copy gene located at 5 E-F on the X chromosome. P-element insertion into the 5'-untranslated region of this gene affects topoisomerase IIIbeta protein levels, but not the overall fertility and viability of the fly. We purified topoisomerase IIIbeta to near homogeneity and observed relaxation activity only with a hypernegatively supercoiled substrate, but not with plasmid DNA directly isolated from bacterial cells. Despite this difference in substrate preference, the degree of relaxation of the hypernegatively supercoiled substrate is comparable to relaxation of plasmid DNA by other type I enzymes. Drosophila topoisomerase IIIbeta forms a covalent linkage to 5' DNA phosphoryl groups, and the DNA cleavage reaction prefers single-stranded substrate over double-stranded, suggesting an affinity of this enzyme for DNA with non-double-helical structure. 相似文献
18.
J Fujimoto K Sawamoto M Okabe Y Takagi T Tezuka S Yoshikawa H Ryo H Okano T Yamamoto 《The Journal of biological chemistry》1999,274(41):29196-29201
The focal adhesion kinase (FAK) protein-tyrosine kinase plays important roles in cell adhesion in vertebrates. Using polymerase chain reaction-based cloning strategy, we cloned a Drosophila gene that is homologous to the vertebrate FAK family of protein-tyrosine kinases. We designated this gene Dfak56 and characterized its gene product. The overall protein structure and deduced amino acid sequence of Dfak56 show significant similarity to those of FAK and PYK2. Dfak56 has in vitro autophosphorylation activity at tyrosine residues. Expression of the Dfak56 mRNA and the protein was observed in the central nervous system and the muscle-epidermis attachment site in the embryo, where Drosophila position-specific integrins are localized. The results suggest that like FAK in vertebrates, Dfak56 functions downstream of integrins. Dfak56 was tyrosine-phosphorylated upon integrin-dependent attachment of the cell to the extracellular matrix. We conclude that the Dfak56 tyrosine kinase is involved in integrin-mediated cell adhesion signaling and thus is a functional homolog of vertebrate FAK. 相似文献
19.
Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82 % similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue. 相似文献