首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
蚂蚁能够举起比自身重100倍的物体,是生物中的"大力士"。但蚂蚁肌肉的组成及结构与人的横纹肌并无根本区别,都是利用肌动蛋白-肌球蛋白之间的相互作用产生拉力。这种作用机制在单细胞的真核生物中就已经存在,说明肌肉的进化已经有很长的历史。除了肌肉收缩,这套系统还在细胞内"货物"的运输、细胞运动和细胞分裂中起重要作用。蚂蚁之所以"力气大"是因为一个简单的几何原理,即物体尺寸变化时,线性、面积和体积变化的速度不同。  相似文献   

2.
从肌球蛋白工作循环的机械化学偶联模型出发,利用化学动力学方法和生物化学热力学原理,结合肌球蛋白单分子实验结果,从能量转化的观点给出了肌肉收缩的Hill特性式,加深了对Hill特性式及肌肉收缩过程中能量转化的理解,在整合肌球蛋白单分子性质与肌肉收缩宏观性质的信息方面做了尝试。  相似文献   

3.
动物的肌肉     
肌肉源于胚胎中胚层。但最早的肌肉却出现在仅具内、外2个胚层的无脊椎动物(腔肠动物)。因缺乏中胚层,这类动物无独立的肌细胞,但在外胚层的上皮细胞和内胚层的营养细胞内具有肌原纤维,所以这两种细胞兼有肌肉收缩的功能,而被称为皮肌细胞(或外皮肌细胞)和营养肌肉细胞(或内皮肌细胞)。皮肌细胞基部平行延伸成为收缩突起分布至触手、体轴.其内含的肌原纤维构成了体壁的纵肌层;营养肌肉细胞基部的收缩突起向二侧延伸,其内的肌原纤维与身体纵轴成直角分布,环绕身体构成体壁的环肌。纵肌收缩使身体和触手变短变粗,环肌收缩则身体和触手纵行伸长。二层“肌肉”的协调配合,使腔肠动物能保持正常体形并移动身体。  相似文献   

4.
本工作使用肌肉的切碎移植的方法来作快、慢肌肉的运动神经的交叉支配。将鸡右侧前背阔肌(慢)摘除而使其神经留在原位,再将左侧后背阔肌(快)取出切碎并放在右前肌的空位(第一组),在另一组动物是将右前肌摘出切碎后仍放回原位(第二组)。数月后用电刺激慢神经并用等长杠杆记录肌肉的收缩。第一组动物的新生肌肉的单收缩显然比第二组快些,而且在高频(250/s)刺激下表现抑制现象。第二组动物的新生肌肉不但收缩较慢,而且与前背阔肌一样不产生高频抑制。上述现象证明鸡的由快肌碎片形成的新生肌肉仍保持快肌的某些性质,而且在慢肌神经支配下仍能如此。本工作也进一步提供了维金斯基抑制与神经无关而与肌肉有关的证据。本文推测肌肉很可能是通过其卫星细胞而把某些性质传给新生肌肉的。  相似文献   

5.
本文报道了中国水蛇横纹肌系统的大体解剖。其中,对躯干部肌肉描述较详。  相似文献   

6.
目的建立针电极口内刺激猴软腭肌肉诱发腭咽闭合运动的模式,取得软腭肌肉运动的有效刺激数值,为软腭肌肉功能重建奠定基础。方法通过解剖成年猕猴软腭的五组肌肉,确定其体表位置;利用实验动物用腭部肌肉电极定位刺激器及针式电极对软腭肌肉进行有效刺激;结合鼻咽纤维镜、头颅侧位X片及软腭造影技术观察、记录肌肉收缩及腭咽闭合动作。结果在猕猴口内定位目标肌肉进行针电极刺激可诱发肌肉收缩。刺激电压为3 V、刺激频率为20 Hz时均能诱发单侧软腭肌肉的有效收缩;单侧腭帆提肌在刺激电压为5 V、20 Hz时可发生腭咽闭合动作。咽腭肌、舌腭肌在刺激电压5 V、刺激频率100 Hz时发生软腭下降动作。腭帆张肌仅发生收缩,而未发生腭咽闭合。应用鼻咽纤维镜和X线成像技术配合能记录腭咽闭合动作。结论弥猴可作为研究软腭肌肉运动模式的实验动物。应用电极刺激软腭肌肉,可初步建立腭咽闭合的动作模式。  相似文献   

7.
鱼类肌肉组织发生和分化相关基因的研究进展   总被引:1,自引:0,他引:1  
鱼类骨骼肌由两种分布位置不同的肌纤维组成,一种是位于皮下浅层的慢收缩红肌纤维,另一种是构成躯体绝大部分的快收缩白肌纤维.肌肉组织中含有多种不同类型的蛋白质如具有收缩功能的结构蛋白,可溶性的肌肉蛋白及肌肉特异性的转录因子等,这些所有的肌源蛋白的产生都经过了复杂的肌肉发生与分化过程.基于相关研究近况,分析了多种转录因子的正、负向调控对肌肉分化发育的影响,同时讨论了研究此调控过程的理论价值及未来应用意义.  相似文献   

8.
阐述了滑行学说解释肌肉收缩过程的基本要点,并就一块肌肉中许多肌小节如何实现同时收缩的问题,进行了初步探讨。  相似文献   

9.
肌球蛋白工作循环的一个新模型   总被引:4,自引:0,他引:4  
分析总结关于分子马达肌球蛋白的最新研究结果,给出一个新的肌球蛋白工作循环的机械化学偶联模型.从新模型出发,用一组化学动力学方程描述肌肉中大量肌球蛋白的集体工作行为.利用动力学方程的非平衡定态解,并结合Pate和Cooke的实验结果得到了力作为变量的肌肉态方程.理论结果同热力学原理一致,与传统的肌肉收缩理论有一定区别.根据肌肉的特殊结构,对肌肉态方程做了进一步讨论.  相似文献   

10.
序言直到约十五年以前,对于横纹肌的研究,几乎都是在不同的领域内分别进行的。生物化学方面的工作,主要是研究从肌细胞抽提出来,并且经过纯化的酶和收缩蛋白的性质。虽然这些研究已经取得了不少很重要的结果,使我们从肌肉获得的关于细胞组成成分的性质和这些成分相互关系的知识,几乎比从身体中任何其他组织获得的都多,可是这些知识还远不足以使我们了解有严密而完善结构的横纹肌细胞,作为一个整体,是如何工作  相似文献   

11.
A chemical comparison of tropomyosins from muscle and non-muscle tissues.   总被引:17,自引:0,他引:17  
Tropomyosins from six different calf tissues: aorta (smooth muscle), skeletal muscle, heart, brain, pancreas and platelets have been isolated, as well as a tropomyosin from mouse fibroblasts. The three muscle tropomyosins have identical polypeptide molecular weights (35,000), paracrystal periodicity and fine structure, and very similar peptide maps. The four non-muscle tropomyosins also have identical polypeptide molecular weights (30,000), paracrystal periodicity and fine structure, and very similar peptide maps. All tropomyosins examined have the same C-terminal amino acid, isoleucine and a blocked N terminal. These findings indicate that muscle and non-muscle tropomyosins are grouped into two similar but non-identical classes of protein. The two classes have at least ten peptide differences out of 31 total peptides, each group having several peptides not found in the other group. This suggests that the two classes of tropomyosins are coded for by different gene classes. It is likely that both gene classes evolved from an ancestral gene by a process involving gene duplication.Peptide maps of skeletal muscle tropomyosins from rabbit, calf and chick, and of non-muscle tropomyosins from rabbit, mouse and calf show few species differences. This suggests that tropomyosin is a highly conserved molecule.  相似文献   

12.
1. On electrophoresis in dissociating conditions the tropomyosins isolated from skeletal muscles of mammalian, avian and amphibian species migrated as two components. These were comparable with the alpha and beta subunits of tropomyosin present in rabbit skeletal muscle. 2. The alpha and beta components of all skeletal-muscle tropomyosins contained 1 and 2 residues of cysteine per 34000g respectively. 3. The ratio of the amounts of alpha and beta subunit present in skeletal muscle tropomyosins was characteristic for the muscle type. Muscle consisting of slow red fibres contained a greater proportion of beta-tropomyosin than muscles consisting predominantly of white fast fibres. 4. Mammalian and avian cardiac muscle tropomyosins consisted of alpha-tropomyosin only. 5. Mammalian and avian smooth-muscle tropomyosins differed both chemically and immunologically from striated-muscle tropomyosins. 6. Antibody raised against rabbit skeletal alpha-tropomyosin was species non-specific, reacting with all other striated muscle alpha-tropomyosin subunits tested. 7. Antibody raised against rabbit skeletal beta-tropomyosin subunit was species-specific.  相似文献   

13.
Cnidaria are the most basal animal phylum in which smooth and striated muscle cells have evolved. Since the ultrastructure of the mononucleated striated muscle is similar to that of higher animals, it is of interest to compare the striated muscle of Cnidaria at the molecular level to that of triploblastic phyla. We have used tropomyosins, a family of actin binding proteins to address this question. Throughout the animal kingdom, a great diversity of tropomyosin isoforms is found in non-muscle cells but only a few conserved tropomyosins are expressed in muscle cells. Muscle tropomyosins are all similar in length and share conserved termini. Two cnidarian tropomyosins have been described previously but neither of them is expressed in striated muscle cells. Here, we have characterized a new tropomyosin gene Tpm2 from the hydrozoan Podocoryne carnea. Expression analysis by RT-PCR and by whole mount in situ hybridization demonstrate that Tpm2 is exclusively expressed in striated muscle cells of the medusa. The Tpm2 protein is shorter in length than its counterparts from higher animals and differs at both amino and carboxy termini from striated muscle isoforms of higher animals. Interestingly, Tpm2 differs considerably from Tpm1 (only 19% identity) which was described previously in Podocoryne carnea. This divergence indicates a functional separation of cytoskeletal and striated muscle tropomyosins in cnidarians. These data contribute to our understanding of the evolution of the tropomyosin gene family and demonstrate the recruitment of tropomyosin into hydrozoan striated muscles during metazoan evolution. J. Exp. Zool. (Mol. Dev. Evol.) 285:378-386, 1999.  相似文献   

14.
Tropomyosins have been isolated from bovine adrenal medulla. Purified from a heat-stable extract, the adrenal medullary tropomyosins show the same chromatographic patterns as platelet tropomyosin components purified under very similar conditions on ion-exchange (DEAE-Sephacel) and hydroxylapatite columns. When analyzed by polyacrylamide gel electrophoresis, the purified fraction, reduced and denatured, yielded three polypeptides with apparent molecular weights of 38,000, 35,500, and 32,000. The molar ratio of the two major polypeptides (38 kd and 32 kd) was 2:1. The predominant form of 38 kd is different from other nonmuscle tropomyosins previously isolated and with which an apparent molecular weight of 30,000 is normally associated. The three adrenal medullary tropomyosins have similar isoelectric points of about 4.7. When adrenal tropomyosins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea, each form showed a shift to a higher molecular weight, which is a characteristic of muscle tropomyosin. The 38,000 adrenal medullary tropomyosin exhibits a stronger affinity for F-actin than the other forms. Peptide profiles obtained after limited proteolytic digestion show some similarity between the two predominant tropomyosins of the bovine adrenal medulla and also between these and the alpha and beta forms of bovine skeletal muscle tropomyosin.  相似文献   

15.
1. Tropomyosins were extracted from vertebrate and invertebrate muscles, and their immunolo;ical characteristics were compared using antisera against tropomyosins from chicken skeletal and cardiac muscles. 2. Antigenic sites common to those of chicken skeletal muscle tropomyosin were found in all the tropomyosins tested, although the reactions of these common antigenic sites in an immunodiffusion test were weak in tropomyosins from phylogenetically distant animals. 3. An immunological difference was found between alpha-tropomyosins from chicken cardiac muscle and rabbit cardiac muscle. Thus they had specific antigenic sites in addition to the common ones. 4. A component was found in a 1 M KCL extract of Tetrahymena pyriformis which reacted with antiserum against chicken skeletal muscle tropomyosin.  相似文献   

16.
We have isolated tropomyosin cDNAs from human skeletal muscle and nonmuscle cDNA libraries and constructed gene-specific DNA probes for each of the four functional tropomyosin genes. These DNA probes were used to define the regulation of the corresponding mRNAs during the process of myogenesis. Tropomyosin regulation was compared with that of beta- and gamma-actin. No two striated muscle-specific tropomyosin mRNAs are coordinately accumulated during myogenesis nor in adult striated muscles. Similarly, no two nonmuscle tropomyosins are coordinately repressed during myogenesis. However, mRNAs encoding the 248 amino acid nonmuscle tropomyosins and beta- and gamma-actin are more persistent in adult skeletal muscle than those encoding the 284 amino acid nonmuscle tropomyosins. In particular, the nonmuscle tropomyosin Tm4 is expressed at similar levels in adult rat nonmuscle and striated muscle tissues. We conclude that each tropomyosin mRNA has its own unique determinants of accumulation and that the 248 amino acid nonmuscle tropomyosins may have a role in the architecture of the adult myofiber. The variable regulation of nonmuscle isoforms during myogenesis suggests that the different isoforms compete for inclusion into cellular structures and that compensating autoregulation of mRNA levels bring gene expression into alignment with the competitiveness of each individual gene product. Such an isoform competition-autoregulatory compensation mechanism would readily explain the unique regulation of each gene.  相似文献   

17.
A cDNA expression library of approximately 80,000 members was prepared from rat embryonic fibroblast mRNA using the plasmid expression vectors pUC8 and pUC9. Using an immunological screening procedure and 32P-labeled cDNA probes, clones encoding rat embryonic fibroblast tropomyosin 1 (TM-1) were identified and isolated. DNA sequence analysis was carried out to determine the amino acid sequence of the protein. Rat embryonic fibroblast TM-1 was found to contain 284 amino acids and is most homologous to smooth muscle alpha-tropomyosin compared with skeletal muscle alpha- and beta-tropomyosins and platelet beta-tropomyosin. Among the various tropomyosins, two regions where the greatest sequence divergence is evident are between amino acids 185 and 216 and amino acids 258 and 284. Rat embryonic fibroblast TM-1 and chicken smooth muscle alpha-tropomyosin are most closely related from amino acids 185 and 216 compared with skeletal muscle and platelet tropomyosins. In contrast, rat embryonic fibroblast TM-1, smooth muscle alpha-tropomyosin, and platelet tropomyosin are most homologous from amino acids 258 and 284 compared with skeletal muscle tropomyosins. These differences in sequences at the carboxyl-terminal region of the various tropomyosins are discussed in relation to differences in their binding to skeletal muscle troponin and its T1 fragment.  相似文献   

18.
Tropomyosins from bovine aorta and pulmonary artery exhibit identical electrophoretic patterns in sodium dodecyl sulfate but differ from tropomyosins of either chicken gizzard or rabbit skeletal muscle. Each of the four tropomyosins binds readily to skeletal muscle F-actin as indicated by their sedimentation with actin and by their ability to maximally stimulate or inhibit actin-activated ATPase activity at a molar ratio of one tropomyosin per seven actin monomers. Smooth and skeletal muscle tropomyosins differ in their effects on activity of skeletal myosin or heavy meromyosin (HMM); the former can enhance activity under conditions in which the latter inhibits. Gizzard and arterial tropomyosins are usually equally effective in stimulating ATPase activity of skeletal acto-HMM, but at high concentrations of Mg2+ gizzard tropomyosin is more effective, a result that cannot be attributed to differences in the binding of the two tropomyosins to F-actin. The effects of tropomyosin also depend on the type of myosin; tropomyosin enhances activity of gizzard myosin under conditions in which it inhibits that of skeletal myosin. Increasing the pH or the Mg2+ concentration can reverse the effect of tropomyosin on actin-stimulated ATPase activity of skeletal HMM from activation to inhibition, but this reversal is not found with gizzard myosin. Activity in the absence of tropomyosin is independent of pH, and the loss of activation with increasing pH is not accompanied by loss of binding of tropomyosin to actin.  相似文献   

19.
The ATPase activity of acto-myosin subfragment 1 (S-1) was measured in the presence of smooth and skeletal muscle tropomyosins over a wide range of ionic strengths (20-120 mM). In contrast to the 60% inhibitory effect caused by skeletal muscle tropomyosin at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on ionic strength. At low ionic strength (20 mM), smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM), it potentiates the ATPase activity 3-fold. All of these ATPase activities were measured at very low ratios of S-1 to actin, under conditions at which a 4-fold increase in S-1 concentration did not change the specific activity of the tropomyosin-acto.S-1 ATPase. Therefore, the potentiation of the ATPase activity by smooth muscle tropomyosin at high ionic strength cannot be explained by bound S-1 heads cooperatively turning on the tropomyosin-actin complex. To determine whether the fully potentiated rates are different in the presence of smooth muscle and skeletal muscle tropomyosins, S-1 which was extensively modified by N-ethylmaleimide was added to the ATPase assay to attain high ratios of S-1 to actin. The results showed that, under all conditions, the fully potentiated rates are the same for both tropomyosins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Smooth and non-muscle tropomyosins were found to produce a 2-3-fold Ca-insensitive stimulation of the ATPase activity of reconstituted skeletal muscles actomyosin at normal MgATP concentrations and physiological ratios of myosin to actin. Under the same conditions skeletal muscles tropomyosin had no effect. Similar effects of these three tropomyosins were observed for the low myosin/F-actin ratios necessary for kinetic measurements. Since it could be established that this actomyosin system, with or without tropomyosin, obeyed Michaelian kinetics, the tropomyosin effects could be interpreted in terms of their influence on maximal turnover (V) or on the affinity of myosin for actin (Kapp). Accordingly, gizzard tropomyosin had practically no effect on the affinity and reduced only slightly the value of V, compared to pure actin. In contrast to gizzard tropomyosin, brain tropomyosin produced an approximately twofold increase in both Kapp and V; i.e. it increased the turnover rate but decreased the affinity. It is apparent from the data that brain tropomyosin acts as an uncompetitive activator with respect to pure actin, while having the same V as the actin plus gizzard tropomyosin complex. Further studies on these tropomyosins show that only skeletal and smooth muscle tropomyosin have similar functional properties with respect to troponin inhibition and the activation of the ATPase at low ATP concentrations. It is suggested that the noted increases in V by tropomyosin are caused by the acceleration of the dissociation of the myosin head from actin at the end point of the cross bridge movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号