首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Bovine factor B, a polypeptide required for the coupled activity of the mitochondrial ATP synthase complex, was cloned. A novel expression system for overproducing the recombinant bovine factor B was developed, which yielded the recombinant polypeptide at a level of 12-15 mg of protein per liter of bacterial culture. Reconstitution of the recombinant polypeptide with factor B-depleted ammonia, EDTA-treated submitochondrial particles (AE-SMP) restored the formation of substrate-driven DeltapH gradient across vesicular membranes, presumably by blocking a proton leak. The proton leak in the AE-SMP could also be blocked by the F0 inhibitors oligomycin and dicyclohexylcarbodiimide, but not the F1-ATPase inhibitors efrapeptin and aurovertin B. The six factor B thiols titrated rapidly with Ellman's reagent, and two of these, presumably Cys92 and Cys94, gained protection following treatment of factor B with a vicinal dithiol-specific reagent phenylarsine oxide (PAO). Similarly, Cd2+, whose binding to factor B is believed to also involve a vicinal dithiol, and PAO, protected approximately 2 Cys residues against labeling with sulfhydryl-specific fluorescent reagent fluorescein-5'-maleimide. The circular dichroism spectra showed that binding of Cd2+ and Zn2+, but not Ca2+ to bovine factor B caused small but reproducible changes in the secondary structure elements of the polypeptide.  相似文献   

2.
In order to assess the role of thiol groups in the Fo part of the ATP synthase in the coupling mechanism of ATP synthase, we have treated isolated Fo, extracted from beef heart Complex V with urea, with thiol reagents, primarily with diazenedicarboxylic acid bis-(dimethylamide) (diamide) but also with Cd2+ and N-ethylmaleimide. FoF1 ATP synthase was reconstituted by adding isolated F1 and the oligomycin-sensitivity-conferring-protein (OSCP) to Fo. The efficiency of reconstitution was assessed by determining the sensitivity to oligomycin of the ATP hydrolytic activity of the reconstituted enzyme. Contrary to Cd2+, incubation of diamide with Fo, before the addition of F1 and OSCP, induced a severe loss of oligomycin sensitivity, due to an inhibited binding of F1 to Fo. This effect was reversed by dithiothreitol. Conversely, if F1 and OSCP were added to Fo before diamide, no effect could be detected. These results show that F1 (and/or OSCP) protects Fo thiols from diamide and are substantiated by the finding that the oligomycin sensitivity of ATP hydrolysis activity of isolated Complex V was also unaltered by diamide. Gel electrophoresis of FoF1 ATP synthase, reconstituted with diamide-treated Fo, revealed that the loss of oligomycin sensitivity was directly correlated with diminution of band Fo 1 (or subunit b). Concomitantly a band appeared of approximately twice the molecular weight of subunit Fo 1. As this protein contains only 1 cysteine residue (Walker, J. E., Runswick, M. J., and Poulter, L. (1987) J. Mol. Biol. 197, 89-100), the effect of diamide is attributed to the formation of a disulfide bridge between two of these subunits. These results offer further evidence for the proposal, based on aminoacid sequence and structural analysis, that subunit Fo 1 of mammalian Fo is involved in the binding with F1 (Walker et al. (1987]. N-Ethylmaleimide affects oligomycin sensitivity to a lesser extent than diamide, suggesting that the mode of action of these reagents (and the structural changes induced in Fo) is different.  相似文献   

3.
Factor B is a water-soluble protein, which is required for the coupled activity of the mitochondrial ATP synthase complex. Specific removal of factor B from well-coupled bovine heart submitochondrial particles (SMP) results in uncoupling and the loss of ATP-driven membrane potential formation and reverse electron transfer from succinate to NAD. Addition of recombinant human factor B (molecular mass 20,341 Da) to factor B-depleted SMP (AE-SMP) restores these properties [G.I. Belogrudov, and Y. Hatefi, (2002) J. Biol. Chem. 277, 6097-6103]. This paper shows that extraction and purification of ATP synthase complex (complex V) from bovine heart mitochondria results in extensive loss of factor B. Addition of recombinant human factor B to AE-SMP completely restores the lost oxidative phosphorylation and ATP-32P(i) exchange activities of the particles and increases the ATP-32P(i) exchange activity of complex V by 2.5-fold. These results further indicate that factor B is an essential component of the mammalian ATP synthase complex.  相似文献   

4.
Evidence for the presence of a functionally important vicinal dithiol in mitochondrial coupling factor B (FB) has been presented earlier (Sanadi, D. R. (1982) Biochim. Biophys. Acta 683, 39-56). FB was completely inactivated by 38 micron of copper o-phenanthroline or 0.63 mM iodosobenzoate, and the kinetics were consistent with intramolecular disulfide formation as were polyacrylamide gel patterns which showed that FB which had been treated with copper o-phenanthroline had a different mobility from that of untreated FB. ATP-Pi exchange activity and ATP-induced binding of bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol (oxonol VI) to H+ -ATPase were also inhibited by the thiol oxidizing reagents, although oligomycin-sensitive ATPase activity was unaffected. F0 isolated from H+ -ATPase rebinds purified F1 with the restoration of ATP-induced oxonol-binding activity. Prior treatment of F0 (but not of F1) with copper o-phenanthroline abolished the oxonol-binding activity of reconstituted F0-F1. 115Cd binds tightly to H+ -ATPase and the bound protein can be recovered by gel electrophoresis in phosphate buffer in the presence of sodium dodecyl sulfate at a position corresponding to FB. Prior treatment of the H+ -ATPase with copper o-phenanthroline abolished 115Cd binding. The results indicate that the major effect of these inhibitors is on FB dithiol and leave little doubt that Cd2+ is indeed bound to a vicinal dithiol group.  相似文献   

5.
Effects of diamide on proton conductance of electron transport particles (ETPH), purified H+-ATPase (F1-F0), F0 of the H+-ATPase from beef heart mitochondria and binding of cadmium (109Cd) to the H+-ATPase have been examined in the present paper. When ETPH and purified H+-ATPase are treated with 1 mM diamide, ATP-dependent generation of membrane potential, monitored by the absorbance change produced by the redistribution of oxonol VI, is consistently inhibited. Diamide also blocks passive H+ conductance driven by a K+ diffusion potential in the membrane sector, F0, of H+-ATPase. Furthermore, diamide treatment drastically reduces the binding of 109Cd2+ to H+-ATPase, showing competition for the FB dithiol group.  相似文献   

6.
Bovine heart submitochondrial particles depleted of F1 by treatment with urea ("F1-depleted particles') were incubated with soluble F1-ATPase. The binding of F1 to the particles and the concomitant conferral of oligomycin sensitivity on the ATPase activity required the presence of cations in the incubation medium. NH4+, K+, Rb+, Na+ and Li+ promoted reconstitution maximally at 40-74 mM, guanidinium+ and Tris+ at 20-30 mM, and Ca2+ and Mg2+ at 3-5 mM. The particles exhibited a negative zeta-potential, as determined by microelectrophoresis, and this was neutralized by mono- and divalent cations in the same concentration range as that needed to promote F1 binding and reconstitution of oligomycin-sensitive ATPase. It is concluded that the cations act by neutralizing negative charges on the membrane surface, mainly negatively charged phospholipids. These results are discussed in relation to earlier findings reported in the literature with F1-depleted thylakoid membranes and with submitochondrial particles depleted of both F1 and the coupling proteins F6 and oligomycin sensitivity-conferring protein.  相似文献   

7.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

8.
Activation of potassium ion transport in mitochondria by cadmium ion   总被引:2,自引:0,他引:2  
Low levels of Cd2+ (1-5 microM) produce rapid swelling of mitochondria, which is respiration-dependent and uncoupler-sensitive. No cation requirement is apparent, since the swelling occurs in a medium containing only sucrose and the respiratory substrate. The swelling is inhibited by ruthenium red, suggesting that this effect of Cd2+ requires its entry into mitochondria. In medium containing 9 mM K+, addition of Cd2+ along with ruthenium red increases the rate of K+ influx threefold. In the presence of K+, Rb+ or Li+, but not of Na+, addition of Cd2+ produces first efflux of H+ into the medium followed by discharge of the pH gradient or uncoupling. Only the latter effect is inhibited by ruthenium red, showing that the efflux and influx of H+ are independent reactions. The H+ efflux appears to be an antiport response to the induced K+ entry. Its activation by Cd2+ is similar to the known effect of p-chloromercuriphenyl sulfonate. The H+ influx or uncoupling appears to result from binding of Cd2+ to some matrix-facing membrane site, perhaps the dithiol group on coupling factor B, and may relate to apparent permeability changes associated Cd2+-induced swelling.  相似文献   

9.
Coupling factor B activity was measured by the stimulation of the ATP-driven NAD+ reduction by succinate or the 32Pi-ATP exchange activity of Factor B-depleted submitochondrial particles. Half-maximal coupling activity was inhibited by 30 microM cadmium, 5 microM phenylarsine oxide, or 0.3 mM arsenite-2,3-dimercaptopropanol. The inhibition was relieved by slight excess of dithiol but not by a 10-fold molar excess of 2-mercaptoethanol. Inhibition of coupling activity by phenylarsine oxide or cadmium was not due to interference in binding of Factor B to depleted particles. Isolated Factor B binds phenylarsine oxide resulting in loss of ability to stimulate depleted submitochondrial particles. The inhibition was largely overcome by dithiol but not by monothiols. The residual coupling activity of depleted submitochondrial particles was highly resistant to cadmium or arsenical. Moreover, binding of arsenical to the depleted particles per se, did not result in inhibition of Factor B-stimulated activity. Furthermore, the addition of phenylarsine oxide to H+-ATPase resulted in loss of Pi-ATP exchange and stimulation of oligomycin-sensitive ATPase activities. Both effects were further potentiated by 2-mercaptoethanol and reversed by dithiols. These effects parallel uncoupling of oxidative phosphorylation in mitochondria by these inhibitors and point to Factor B as the probable component sensitive to these inhibitors.  相似文献   

10.
Mitochondrial H+ -ATPase complex, purified by the lysolecithin extraction procedure, has been resolved into a "membrane" (NaBr-F0) and a "soluble" fraction by treatment with 3.5 M sodium bromide. The NaBr-F0 fraction is completely devoid of beta, delta, and epsilon subunits of the F, ATPase and largely devoid of alpha and gamma subunits of F1, where F0 is used to denote the membrane fraction and F1, coupling factor 1. This is confirmed by complete loss of ATPase and Pi-ATP exchange activities. The addition of F1 (400 micrograms X mg-1 F0) results in complete restoration of oligomycin sensitivity without any reduction in the F1-ATPase activity. Presumably, this is due to release of ATPase inhibitor protein from the F1-F0 complex consequent to sodium bromide extraction. Restoration of Pi-ATP exchange and H+ -pumping activities require coupling factor B in addition to F1-ATPase. The oligomycin-sensitive ATPase and 32Pi-ATP exchange activities in reconstituted F1-F0 have the same sensitivity to uncouplers and energy transfer inhibitors as in starting submitochondrial particles from the heavy layer of mitochondria and F1-F0 complex. The data suggest that the altered properties of NaBr-F0 observed in other laboratories are probably inherent to their F1-F0 preparations rather than to sodium bromide treatment itself. The H+ -ATPase (F1-F0) complex of all known prokaryotic (3, 8, 9, 10, 21, 32, 34) and eukaryotic (11, 26, 30, 33, 35-37) phosphorylating membranes contain two functionally and structurally distinct entities. The hydrophilic component F1, composed of five unlike subunits, shows ATPase activity that is cold labile as well as uncoupler- and oligomycin-insensitive. The membrane-bound hydrophobic component F0, having no energy-linked catalytic activity of its own, is indirectly assayed by its ability to regain oligomycin sensitive ATPase and Pi-ATP exchange activities on binding to F1-ATPase (33). The purest preparations of bovine heart mitochondrial F0 show seven or eight major components in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or SDS-PAGE (1, 2, 12, 14), ranging from 6 to 54 ku in molecular weight (12). The precise structure and polypeptide composition of mitochondrial F0 is not known. The F0 preparations from bovine heart reported so far have been derived from H+ -ATPase preparations isolated in the presence of cholate and deoxycholate (11, 33, 36, 37).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Beef heart mitochondrial H+-ATPase (F1-F0) vesicles were prepared by lysolecithin extraction of ETPH. ATP-driven membrane potential was monitored indirectly by following absorbance changes of the potential-sensitive dye oxonol VI. The steady-state potential was discharged by oligomycin and/or Cd2+ (a dithiol reagent). At 13 degrees C, the agents appeared to act synergistically; at 24 degrees C the data were equivocal. When Cd2+ was added before energization, the membrane potential was markedly attenuated. Both effects of Cd2+ were inhibited by dithiothreitol. The activation energy for oligomycin-sensitive ATPase exhibited a discontinuity at 16 degrees C. However, the temperature dependence of the rate of potential discharge by oligomycin showed no such discontinuity. The results are discussed in terms of the involvement of thiol groups in proton translocation and the thermotropic behavior of the membrane vesicles.  相似文献   

12.
The physiological role of F(1)F(0)-ATPase inhibition in ischemia may be to retard ATP depletion although views of the significance of IF(1) are at variance. We corroborate here a method for measuring the ex vivo activity of F(1)F(0)-ATPase in perfused rat heart and show that observation of ischemic F(1)F(0)-ATPase inhibition in rat heart is critically dependent on the sample preparation and assay conditions, and that the methods can be applied to assay the ischemic and reperfused human heart during coronary by-pass surgery. A 5-min period of ischemia inhibited F(1)F(0)-ATPase by 20% in both rat and human myocardium. After a 15-min reperfusion a subsequent 5-min period of ischemia doubled the inhibition in the rat heart but this potentiation was lost after 120 min of reperfusion. Experiments with isolated rat heart mitochondria showed that ATP hydrolysis is required for effective inhibition by uncoupling. The concentration of oligomycin for 50% inhibition (I(50)) for oxygen consumption was five times higher than its I(50) for F(1)F(0)-ATPase. Because of the different control strengths of F(1)F(0)-ATPase in oxidative phosphorylation and ATP hydrolysis an inhibition of the F(1)F(0)-ATPase activity in ischemia with the resultant ATP-sparing has an advantage even in an ischemia/reperfusion situation.  相似文献   

13.
To better understand the adaptive strategies that led to freshwater invasion by hyper-regulating Crustacea, we prepared a microsomal (Na+, K+)-ATPase by differential centrifugation of a gill homogenate from the freshwater shrimp Macrobrachium olfersii. Sucrose gradient centrifugation revealed a light fraction containing most of the (Na+, K+)-ATPase activity, contaminated with other ATPases, and a heavy fraction containing negligible (Na+, K+)-ATPase activity. Western blotting showed that M. olfersii gill contains a single alpha-subunit isoform of about 110 kDa. The (Na+, K+)-ATPase hydrolyzed ATP with Michaelis Menten kinetics with K5, = 165+/-5 microM and Vmax = 686.1+/-24.7 U mg(-1). Stimulation by potassium (K0.5 = 2.4+/-0.1 mM) and magnesium ions (K0.5 = 0.76+/-0.03 mM) also obeyed Michaelis-Menten kinetics, while that by sodium ions (K0.5 = 6.0+/-0.2 mM) exhibited site site interactions (n = 1.6). Ouabain (K0.5 = 61.6+/-2.8 microM) and vanadate (K0.5 = 3.2+/-0.1 microM) inhibited up to 70% of the total ATPase activity, while thapsigargin and ethacrynic acid did not affect activity. The remaining 30% activity was inhibited by oligomycin, sodium azide and bafilomycin A. These data suggest that the (Na+, K+)-ATPase corresponds to about 70% of the total ATPase activity; the remaining 30%, i.e. the ouabain-insensitive ATPase activity, apparently correspond to F0F1- and V-ATPases, but not Ca-stimulated and Na- or K-stimulated ATPases. The data confirm the recent invasion of the freshwater biotope by M. olfersii and suggest that (Na+, K+)-ATPase activity may be regulated by the Na+ concentration of the external medium.  相似文献   

14.
In isolated plant mitochondria the oxidation of both succinate and exogenous NADH responded in the expected manner to the addition of ADP or uncoupling agents, and the uncoupled rate of respiration was often in excess of the rate obtained in the presence of ADP. However, the oxidation of NAD+-linked substrates responded in a much more complex manner to the addition of ADP or uncoupling agents such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone to mitochondria oxidizing pyruvate plus malate failed to result in a reliable stimulation; this uncoupled rate could be stimulated by adding AMP or ADP in the presence of oligomycin or bongkrekic acid. Spectrophometric measurements showed that the addition of AMP or ADP resulted in the simultaneous oxidation of endogenous nicotinamide nucleotide and the reduction of cytochrome b. ADP was only effective in bringing about these changes in redox state in the presence of Mg2+ whereas AMP did not require Mg2+. It was concluded that AMP activated the flow of electrons from endogenous nicotinamide nucleotide to cytochrome b, possible at the level of the internal NADH dehydrogenase.  相似文献   

15.
P-type ATPases couple scalar and vectorial events under optimized states. A number of procedures and conditions lead to uncoupling or slippage. A key branching point in the catalytic cycle is at the cation-bound form of E(1)-P, where isomerization to E(2)-P leads to coupled transport, and hydrolysis leads to uncoupled release of cations to the cis membrane surface. The phenomenon of slippage supports a channel model for active transport. Ability to occlude cations within the channel is essential for coupling. Uncoupling and slippage appear to be inherent properties of P-type cation pumps, and are significant contributors to standard metabolic rate. Heat production is favored in the uncoupled state. A number of disease conditions, include ageing, ischemia and cardiac failure, result in uncoupling of either the Ca(2+)-ATPase or Na(+)/K(+)-ATPase.  相似文献   

16.
Bovine heart submitochondrial particles depleted of F1, OSCP (oligomycin sensitivity-conferring protein), and F6 require the presence of cations to rebind F1. Among the cations tested, NH4+, Cs+, and Rb+ were most efficient, followed by K+, Na+, Li+, Ca2+, and Mg2+. The extent of F1 binding approached that occurring upon supplementation with F6 and/or OSCP, and was similar to the F1 content of particles prior to depletion. In the absence of cations, F6 and/or OSCP were ineffective in promoting the binding of F1 to the depleted particles. The F1 bound to the particles in the presence of cations alone was completely insensitive to oligomycin. It remained bound to the particles after removal of the cation, and could be rendered partially (approximately 50%) or maximally (less than 80%) oligomycin-sensitive upon the subsequent addition of OSCP or of F6 and OSCP, respectively. The surface potential of the particles, as determined by microelectrophoresis, was screened by all cations tested, regardless of their ability to promote the binding of F1; this was in contrast to earlier findings with particles depleted of F1 only, where the ability of cations to promote the rebinding of F1 paralleled their efficiency to neutralize the surface charge of the particle membrane. It is concluded that the effect of cations on the binding of F1 to F1-, F6-, and OSCP-depleted particles is due to a specific interaction of the cations with certain segments or components of the membrane. The results suggest the existence of a binding site for F1 on F0 in addition to the binding site(s) provided by F6 and OSCP.  相似文献   

17.
The antibiotics venturicidin, oligomycin and ossamycin were investigated as potential inhibitors of the Escherichia coli H+-ATPase. It was found that venturicidin strongly inhibited ATP-driven proton transport and ATP hydrolysis, while oligomycin weakly inhibited these functions. Inhibition of the H+-ATPase by venturicidin and oligomycin was correlated with inhibition of F0-mediate proton transport. Both inhibitors were found to interfere with the covalent reaction between dicyclohexyl[14C]carbodiimide and the F0 subunit c (uncE protein). Ossamycin had no direct inhibitory effect on E. coli F0 or F1; rather, it was found to uncouple ATP hydrolysis from proton transport.  相似文献   

18.
In the presence of K(+), addition of ATP or ethanol to yeast mitochondria triggers the depletion of the transmembrane potential (DeltaPsi) and this is prevented by millimolar concentrations of phosphate (PO(4)). Different monovalent and polyvalent anions were tested for their protective effects on mitochondria from Saccharomyces cerevisiae. Only arsenate (AsO(4)) and sulfate (SO(4)) were as efficient as PO(4) to protect mitochondria against the K(+) mediated swelling, depletion of the DeltaPsi, and decrease in the ratio of uncoupled state to state 4 respiration rates. Protection by PO(4), SO(4) or AsO(4) was inhibited by mersalyl, suggesting that these anions interact with a site located in the matrix side. In addition, the effects of SO(4) and AsO(4) on the F(1)F(0)-ATPase were tested: both SO(4) and AsO(4) inhibited the synthesis of ATP following competitive kinetics against PO(4) and non-competitive kinetics against ADP. The mersalyl sensitive uptake of (32)PO(4) was not inhibited by SO(4) or AsO(4), suggesting that the synthesis of ATP was inhibited at the F(1)F(0)-ATPase. The hydrolysis of ATP was not inhibited, only a stimulation was observed when AsO(4) or sulfite (SO(3)) were added. It is suggested that the structure and charge similarities of PO(4), AsO(4) and SO(4) result in undiscriminated binding to at least two sites located in the mitochondrial matrix: at one site, occupation by any of these three anions results in protection against uncoupling by K(+); at the second site, in the F(1)F(0)-ATPase, AsO(4) and SO(4) compete for binding against PO(4) leading to inhibition of the synthesis of ATP.  相似文献   

19.
A Strid  P Nyrén 《Biochemistry》1989,28(25):9718-9724
Divalent cations are divided into two groups in relation to their ability to promote ATP synthase catalyzed reactions. In the presence of Mg2+, the following pattern rules: (i) uncoupler-stimulated ATP hydrolysis of Rhodospirillum rubrum chromatophores which shows an optimum concentration of the divalent cation; (ii) ATP-induced proton pumping in chromatophores; (iii) light-induced ATP synthesis in chromatophores; (iv) no or very low ATPase activity of purified F1-ATPase unmasked by diethylstilbestrol or n-octyl beta-D-glucopyranoside. In the presence of Ca2+, the following pattern occurs: (i) no stimulation of the ATP hydrolysis in chromatophores by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone; (ii) no ATP-induced proton pumping; (iii) no light-induced ATP synthesis; (iv) a high ATPase activity of the purified F1-ATPase which is inhibited by diethylstilbestrol and n-octyl beta-D-glucopyranoside. Co2+, Mn2+, and Zn2+ are members of the "Mg2+-group", whereas Cd2+ is suggested to fall between the two groups. Intrinsic uncoupling of the membrane-bound ATP synthase has been suggested to account for the effect caused by Ca2+ in chloroplasts [Pick, U., & Weiss, M. (1988) Eur. J. Biochem. 173, 623-628]. Such an interpretation is consistent with our results on chromatophores. The uncoupling cannot occur at the level of the membrane since neither light-induced nor Mg-ATP-induced proton pumping is affected by Ca2+. A conformational change is suggested to be the reason for this intrinsic uncoupling, and it is proposed to be controlled by the diameters of the divalent cations (Ca2+ greater than Cd2+ greater than Mn2+ greater than Co2+ greater than Zn2+ greater than Mg2+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We studied how the introduction of an additional ATP-consuming reaction affects the metabolic fluxes in Lactococcus lactis. Genes encoding the hydrolytic part of the F(1) domain of the membrane-bound (F(1)F(0)) H(+)-ATPase were expressed from a range of synthetic constitutive promoters. Expression of the genes encoding F(1)-ATPase was found to decrease the intracellular energy level and resulted in a decrease in the growth rate. The yield of biomass also decreased, which showed that the incorporated F(1)-ATPase activity caused glycolysis to be uncoupled from biomass production. The increase in ATPase activity did not shift metabolism from homolactic to mixed-acid fermentation, which indicated that a low energy state is not the signal for such a change. The effect of uncoupled ATPase activity on the glycolytic flux depended on the growth conditions. The uncoupling stimulated the glycolytic flux threefold in nongrowing cells resuspended in buffer, but in steadily growing cells no increase in flux was observed. The latter result shows that glycolysis occurs close to its maximal capacity and indicates that control of the glycolytic flux under these conditions resides in the glycolytic reactions or in sugar transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号