首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Protoplasts of a barley ( Hordeum vulgare L. cv. Golden Promise) suspension cell line were used for PEG-mediated gene transfer. Transient gene expression in barley protoplasts was studied using a chimeric CaMV 35S cat construct, which was only poorly expressed in barley cells. However, insertion of exon 1 and intron 1 of the maize Shrunken-1 (Sh1) gene in the 5'-untranslated leader of the construct strongly stimulated gene expression. By using the optimized chimeric cat construction the amount of CAT protein that was reached 19 hours after DNA uptake was 0.5% of total protein, which was calculated from western blot data.
As an alternative marker gene for expression studies, we also tested the firefly luciferase gene in barley protoplasts. Low level expression of chimeric CaMV 35S luciferase genes could be highly stimulated when Sh1 exon1 and intron1 were inserted in the 5'-untranslated leader of the constructs. Enhanced luciferase gene expression by Shrunken-1 intronic sequences enabled us to monitor gene integration events early after DNA uptake using a promoterless luciferase marker gene, which could only be expressed after integration behind an endogenous promoter.  相似文献   

2.
3.
In vivo and in vitro gene transfer experiments have suggested that the elements mediating intron recognition differ in mammalian, yeast and plant nuclei. Differences in the sequence dependencies, which also exist between dicotyledonous and monocotyledonous nuclei, have prevented some monocot introns from being spliced in dicot nuclei. To locate elements which modulate efficient recognition of introns in dicot nuclei, the maize Adh1 gene has been expressed in full-length and single intron constructs in Nicotiana benthamiana nuclei using an autonomously replicating plant expression vector. Quantitative PCR-Southern analyses indicate that the inefficient splicing of the maize Adh1 intron 1 (57% AU) in these dicot nuclei can be dramatically enhanced by increasing the degree of U1 snRNA complementarity at the 5′ splice site. This indicates that the 5′ splice site plays a significant role in defining the splicing efficiency of an intron in dicot nuclei and that, most importantly, the remainder of this monocot intron contains no elements which inhibit its accurate recognition in dicot nuclei. Deletions in intron 3 (66% AU) which effectively move the 3′ boundary between AU-rich intron and GC-rich exon sequences strongly activate a cryptic upstream splice site; those which do not reposition this boundary activate a downstream cryptic splice site. This suggests that 3′ splice site selection in dicot nuclei is extremely flexible and not dependent on strict sequence requirements but rather on the transition points between introns and exons. Our results are consistent with a model in which potential splice sites are selected if they are located upstream (5′ splice site) or downstream (3′ splice site) of AU transition points and not if they are embedded within AU-rich sequences.  相似文献   

4.
5.
6.
7.
8.
D McElroy  W Zhang  J Cao    R Wu 《The Plant cell》1990,2(2):163-171
  相似文献   

9.
We describe a phenotypic assay designed to detect excision of the maize controlling element Ac from a selectable marker gene, neomycin phosphotransferase II (NPT II). An NPT II gene which expresses kanamycin resistance in tobacco cells, and contains a unique restriction enzyme site in the untranslated leader region, was constructed. Ac, or a defective Ac element (Ac), was inserted into the leader region of this gene. The transposon insertions inactivated the NPT II gene as determined by transient NPT II expression assays. The three plasmids were inserted into the T DNA of Agrobacterium tumefaciens Ti plasmid vectors, and transferred to tobacco protoplasts. The transformed protoplasts were selected with 100 or 200 µg/ml kanamycin. Protoplasts transformed by the NPT II gene interrupted by Ac formed ˜25% as many calli resistant to 100 or 200 µg/ml kanamycin as protoplasts transformed by the uninterrupted NPT II gene. Protoplasts transformed by the NPT II gene interrupted by Ac did not form any calli resistant to 200 µg/ml of kanamycin when transformed under similar conditions. Southern blot hybridization analyses of seven kanamycin-resistant calli or plants obtained after transformation by the NPT II gene interrupted by Ac revealed that in all cases Ac had excised, restoring the structure of the NPT II gene. This assay is therefore useful to monitor the activity of a transposable element such as Ac and to define the regions of this element involved in transposition activity.  相似文献   

10.
High voltage electrical pulses were used to introduce the CAT reporter gene into cultured protoplasts of breadwheat,Triticum aestivum. Four DNA constructs harboring the CAT gene and the 35S or mannipine synthase promoter were tested for levels of CAT activity 40–45 hr after electroporation of protoplasts. One construct, containing a maize intron sequence between 35S and CAT sequences, conferred 30 to 185 fold greater CAT activity over the other three constructs. Data from these experiments suggest that a maize intron or sequences with similar effects may be required in DNA constructs for efficient heterologous gene expression in cultured cells of breadwheat.Abbreviations CAT Chloramphenicol acetyl transferase - NPT II neomycin phosphotransferase - 35S the 35S promoter of Cauliflower Mosaic Virus - PEG Polyethylene glycol - MES 2-[N-morpholino] ethanesulfonic acid  相似文献   

11.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

12.
13.
Fertile transgenic barley generated by direct DNA transfer to protoplasts   总被引:2,自引:0,他引:2  
We report the generation of transgenic barley plants via PEG-mediated direct DNA uptake to protoplasts. Protoplasts isolated from embryogenic cell suspensions of barley (Hordeum vulgare L. cv Igri) were PEG-treated in a solution containing a plasmid which contained the neomycin phosphotransferase (NPT II) gene under the control of the rice actin promoter and the nos terminator. Colonies developing from the treated protoplasts were incubated in liquid medium containing the selective antibiotic G418. Surviving calli were subsequently transferred to solid media containing G418, on which embryogenic calli developed. These calli gave rise to albino and green shoots on antibiotic-free regeneration medium. NPT II ELISA revealed that approximately half of the morphogenic calli expressed the foreign gene. In total, 12 plantlets derived from NPT-positive calli survived transfer to soil. Southern hybridization analysis confirmed the stable transformation of these plants. However, the foreign gene seemed to be inactivated in plants from one transgenic line. Most of the transgenic plants set seed, and the foreign gene was transmitted and expressed in their progenies, which was ascertained by Southern hybridization and NPT II ELISA.  相似文献   

14.
The mouse c-src gene contains a short neuron-specific exon, N1. To characterize the sequences that regulate N1 splicing, we used a heterologous gene, derived from the human beta-globin gene, containing a short internal exon that is usually skipped by the splicing machinery. Various fragments from the src gene were inserted into the globin substrate to measure their effects on the splicing of the test exon. These clones were transiently expressed in neuronal and nonneuronal cell lines, and the level of exon inclusion was measured by primer extension. Several sequences from the N1 exon region induced the splicing of the heterologous exon. The most powerful effect was seen with a sequence from the intron downstream of the N1 exon. This sequence acted as a strong splicing enhancer, activating splicing of the test exon when placed in the intron downstream. The enhancer was strongest in neuronal LA-N-5 cells but also activated splicing in nonneuronal HEK293 cells. Deletion and linker scanning mutagenesis indicate that the enhancer is made up of multiple smaller elements that must act in combination. One of these elements was identified as the sequence UGCAUG. Three copies of this element can strongly activate splicing of the test exon in LA-N-5 neuroblastoma cells. These component elements of the src splicing enhancer are also apparently involved in the splicing of other short cassette exons.  相似文献   

15.
The present century has witnessed an unprecedented rise in genome sequences owing to various genome-sequencing programs. However, the same has not been replicated with cDNA or expressed sequence tags (ESTs). Hence, prediction of protein coding sequence of genes from this enormous collection of genomic sequences presents a significant challenge. While robust high throughput methods of cloning and expression could be used to meet protein requirements, lack of intron information creates a bottleneck. Computational programs designed for recognizing intron–exon boundaries for a particular organism or group of organisms have their own limitations. Keeping this in view, we describe here a method for construction of intron-less gene from genomic DNA in the absence of cDNA/EST information and organism-specific gene prediction program. The method outlined is a sequential application of bioinformatics to predict correct intron–exon boundaries and splicing by overlap extension PCR for spliced gene synthesis. The gene construct so obtained can then be cloned for protein expression. The method is simple and can be used for any eukaryotic gene expression.  相似文献   

16.
In a previous report, we described the presence, in pituitary tissue, of an alternatively processed species of bovine growth hormone mRNA from which the last intron (intron D) has not been removed by splicing (R. K. Hampson and F. M. Rottman, Proc. Natl. Acad. Sci. USA 84:2673-2677, 1987). Using transient expression of the bovine growth hormone gene in Cos I cells, we observed that splicing of intron D was affected by sequences within the downstream exon (exon 5). Deletion of a 115-base-pair FspI-PvuII restriction fragment in exon 5 beginning 73 base pairs downstream of the intron 4-exon 5 junction resulted in cytoplasmic bovine growth hormone mRNA, more than 95% of which retained intron D. This contrasted with less than 5% of the growth hormone mRNA retaining intron D observed with expression of the unaltered gene. Insertion of a 10-base-pair inverted repeat sequence, CTTCCGGAAG, which was located in the middle of this deleted segment, partially reversed this pattern, resulting in cytosolic mRNA from which intron D was predominantly removed. More detailed deletion analysis of this region indicated that multiple sequence elements within the exon 5, in addition to the 10-base-pair inverted repeat sequence, are capable of influencing splicing of intron D. The effect of these exon sequences on splicing of bovine growth hormone precursor mRNA appeared to be specific for the growth hormone intron D. Deletions in exon 5 which resulted in marked alterations in splicing of growth hormone intron D had no effect on splicing when exon 5 of bovine growth hormone was placed downstream of the heterologous bovine prolactin intron D. Deletions in exon 5 which resulted in marked alterations in splicing of growth hormone intron D had no effect on splicing when exon 5 of bovine growth hormone was placed downstream of the heterologous bovine prolactin intron D. The results of this study suggest a unique interaction between sequences located near the center of exon 5 and splicing of the adjacent intron D.  相似文献   

17.
Pre-mRNA encoding rubisco activase in the Arabidopsis thaliana mutant rca contains a GU to AU change at the 5' splice site of intron 3 and this mutation results in accumulation of splicing intermediates bearing an incompletely processed intron. It has been demonstrated that one of the intermediates contains intron 3 in the form of a lariat and the branchpoint nucleotide has been mapped to the A residue at position −32 forming part of the sequence UUG A U. Analysis of a similar GU to AU 5' splice site mutation, present in a synthetic pre-mRNA context expressed in transfected protoplasts of Nicotiana plumbaginifolia , also suggests formation of lariats with branching occurring at A−31. A small fraction (approximately 10%) of this mutant pre-mRNA also underwent the second step of splicing. In addition to the consensus AG, an AU dinucleotide was used as splicing acceptor.  相似文献   

18.
The herpes simplex virus type 1 thymidine kinase (tk) gene lacks introns and produces stable mRNA in the absence of splicing. We have prepared a hybrid gene by placing the first exon, first intron (first intervening sequence, designated IVS1), and most of the second exon of the normal human beta-globin gene into the 3' untranslated region of the tk gene. Although this hybrid gene contains all globin sequences presumed necessary for the splicing of IVS1, predominantly, unspliced stable cytoplasmic RNA is produced in both long- and short-term expression assays. Moreover, stable unspliced cytoplasmic RNA is detected whether the intron is situated in a sense or an antisense orientation. Efficient splicing of IVS1 is obtained either by deleting the majority of tk coding sequences or by relocating the globin sequences from the 3' to the 5' untranslated region of the tk gene.  相似文献   

19.
Intron lariat formation between the 5' end of an intron and a branchpoint adenosine is a fundamental aspect of the first step in animal and yeast nuclear pre-mRNA splicing. Despite similarities in intron sequence requirements and the components of splicing, differences exist between the splicing of plant and vertebrate introns. The identification of AU-rich sequences as major functional elements in plant introns and the demonstration that a branchpoint consensus sequence was not required for splicing have led to the suggestion that the transition from AU-rich intron to GC-rich exon is a major potential signal by which plant pre-mRNA splice sites are recognized. The role of putative branchpoint sequences as an internal signal in plant intron recognition/definition has been re-examined. Single nucleotide mutations in putative branchpoint adenosines contained within CUNAN sequences in four different plant introns all significantly reduced splicing efficiency. These results provide the most direct evidence to date for preferred branchpoint sequences being required for the efficient splicing of at least some plant introns in addition to the important role played by AU sequences in dicot intron recognition. The observed patterns of 3' splice site selection in the introns studied are consistent with the scanning model described for animal intron 3' splice site selection. It is suggested that, despite the clear importance of AU sequences for plant intron splicing, the fundamental processes of splice site selection and splicing in plants are similar to those in animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号