首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding.  相似文献   

2.
Cabrita LD  Dai W  Bottomley SP 《Biochemistry》2004,43(30):9834-9839
The intrinsic metastability of the serpin native state is the thermodynamic driving force for both proteinase inhibition and the formation of inactive polymers. A number of mechanisms has been proposed to explain how both these conformational changes are achieved. However, one aspect that has received little attention is the movement of the F-helix, which physically impedes both these events. We have applied a protein engineering approach to investigate the conformational changes of this helix during proteinase inhibition, serpin folding, and polymerization. We systematically mutated two highly conserved hydrophobic residues on the F-helix, V161 and I157, and in addition, removed a hydrogen bond between D149 and the first turn of the helix. Our data demonstrate that while all three interactions are important for the stability and folding of the molecule, their contribution during inhibition and polymerization differ. The presence of I157 is crucial to all conformational changes as its loss results in inactivation of the serpin and rapid polymerization. The replacement of D149 does not affect activity but significantly increases the polymerization rate. The interactions formed by V161 play an important role only in maintaining the native conformation. Taken together, these data suggest that the F-helix undergoes a reversible conformational change in both its N- and C-termini during proteinase inhibition only the C-terminus undergoes changes during polymerization, but there is a global change required for folding.  相似文献   

3.
Serpins are remarkable and unique proteins in being able to spontaneously fold into a metastable conformation without the aid of a chaperone or prodomain. This metastable conformation is essential for inhibition of proteinases, so that massive serpin conformational change, driven by the favorable energetics of relaxation of the metastable conformation to the more stable one, can kinetically trap the proteinase-serpin acylenzyme intermediate. Failure to direct folding to the metastable conformation would lead to inactive, latent serpin. How serpins fold into such a metastable state is unknown. Using the ability of component peptides from the serpin α(1)PI to associate, we have now elucidated the pathway by which this serpin efficiently folds into its metastable state. In addition we have established the likely structure of the polymerogenic intermediate of the Z variant of α(1)PI.  相似文献   

4.
The native form of serpins (serine protease inhibitors) is metastable, which is critical to their biological functions. Spontaneous conversion from the native form of serpins into a more stable conformation, called the "latent" form, is restricted. To examine whether the connectivity of strand 1 of beta-sheet C to the hydrophobic core is critical to the serpin's preferential folding to the metastable native conformation, we designed a circularly-permuted mutant of alpha(1)-antitrypsin, the prototype serpin, in which strand 1C is disconnected from the hydrophobic core. Conformation of the circular permutant was similar to that of the latent form, as revealed by equilibrium unfolding, limited proteolysis, and spectroscopic properties. Our results support the notion that rapid folding of the hydrophobic core with concomitant incorporation of strand 1C into beta-sheet C traps the serpin molecule into its native metastable conformation.  相似文献   

5.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein superfamily. Serpins are unique in that their native forms are not the most thermodynamically stable conformation; instead, a more stable, latent conformation exists. During the transition to the latent form, the first strand of beta-sheet C (s1C) in the serpin is peeled away from the beta-sheet, and the reactive center loop (RCL) is inserted into beta-sheet A, rendering the serpin inactive. To elucidate the contribution of specific interactions in the metastable native form to the latency transition, we examined the effect of mutations at the s1C of PAI-1, specifically in positions P4' through P10'. Several mutations strengthened the interactions between these residues and the core protein, and slowed the transition of the protein from the metastable native form to the latent form. In particular, anchoring of the strand to the protein's hydrophobic core at the beginning (P4' site) and center of the strand (P8' site) greatly retarded the latency transition. Mutations that weakened the interactions at the s1C region facilitated the conformational conversion of the protein to the latent form. PAI-1's overall structural stability was largely unchanged by the mutations, as evaluated by urea-induced equilibrium unfolding monitored via fluorescence emission. Therefore, the mutations likely exerted their effects by modulating the height of the energy barrier from the native to the latent form. Our results show that interactions found only in the metastable native form of serpins are important structural features that attenuate folding of the proteins into their latent forms.  相似文献   

6.
The native form of serine protease inhibitors (serpins) is kinetically trapped in a metastable state, which is thought to play a central role in the inhibitory mechanism. The initial binding complex between a serpin and a target protease undergoes a conformational change that forces the protease to translocate toward the opposite pole. Although structural determination of the final stable complex revealed a detailed mechanism of keeping the bound protease in an inactive conformation, it has remained unknown how the serpin exquisitely translocates a target protease with an acyl-linkage unhydrolyzed. We previously suggested that the acyl-linkage hydrolysis is strongly suppressed by active site perturbation during the protease translocation. Here, we address what induces the transient perturbation and how the serpin metastability contributes to the perturbation. Inhibitory activity of alpha1-antitrypsin (alpha1AT) toward elastase showed negative correlations with medium viscosity and Stokes radius of elastase moiety, indicating that viscous drag directly affects the protease translocation. Stopped-flow measurements revealed that the change in the inhibitory activity is primarily caused by the change in the translocation rate. The native stability of alpha1AT cavity mutants showed a negative correlation with the translocation rate but a positive correlation with the acyl-linkage hydrolysis rate, suggesting that the two kinetic steps are not independent but closely related. The degree of active site perturbation was probed by amino acid nucleophiles, supporting the view that the changes in the acyl-linkage hydrolysis rate are due to different perturbation states. These results suggest that the active site perturbation is caused by local imbalance between a pulling force driving protease translocation and a counteracting viscous drag force. The structural architecture of serpin metastability seems to be designed to ensure the active site perturbation by providing a sufficient pulling force, so the undesirable hydrolytic activity of protease is strongly suppressed during the translocation.  相似文献   

7.
The native serpin state is kinetically trapped. However, under mildly destabilizing conditions, the conformational landscape changes, and a number of nonnative conformations with increased stability can be readily formed. The ability to undergo structural change is due to intrinsic strain within the serpin's tertiary fold, which is utilized for proteinase inhibition but renders the protein susceptible to aberrant folding and self-association. The relationship between these various conformations is poorly understood. Antichymotrypsin (ACT) is an inhibitory serpin that readily forms a number of inactive conformations, induced via either environmental stress or interaction with proteinases. Here we have used a variety of biophysical and structural techniques to characterize the relationship between some of these conformations. Incubation of ACT at physiological temperature results in the formation of a range of conformations, including both polymer and misfolded monomer. The ability to populate these nonnative states and the native conformation reflects an energy landscape that is very sensitive to the solution conditions. X-ray crystallography reveals that the misfolded monomeric conformation is in the delta conformation. Further polymerization and seeding experiments show that the delta conformation is an end point in the misfolding pathway of ACT and not an on-pathway intermediate formed during polymerization. The observation that ACT readily forms this inactive conformation at physiological temperature and pH suggests that it may have a role in both health and disease.  相似文献   

8.
The native serpin fold is metastable and possesses the inherent ability to convert into more stable, but inactive, conformations. In order to understand why serpins attain the native fold instead of other more thermodynamically favourable folds we have investigated the presence of residual structure within denatured antichymotrypsin (ACT). Through mutagenesis we created a single tryptophan variant of ACT in which a Trp residue (276) is situated on the H-helix, located within a region known as the B/C barrel. The presence of residual structure around Trp 276 in 5 M guanidine hydrochloride (GdnHCl) was shown by fluorescence and circular dichroism spectroscopy and fluorescence lifetime experiments. The residual structure was disrupted in the presence of 5 M guanidine thiocyanate (GdnSCN). Protein refolding studies showed that significant refolding could be achieved from the GdnHCl denatured state but not the GdnSCN denatured form. The implications of these data on the folding and misfolding of the serpin superfamily are discussed.  相似文献   

9.
Serpins fold to a metastable native state and are susceptible to undergoing spontaneous conformational change to more stable conformers, such as the latent form. We investigated conformational change in tengpin, an unusual prokaryotic serpin from the extremophile Thermoanaerobacter tengcongensis. In addition to the serpin domain, tengpin contains a functionally uncharacterized 56-amino-acid amino-terminal region. Deletion of this domain creates a variant--tengpinDelta51--which folds past the native state and readily adopts the latent conformation. Analysis of crystal structures together with mutagenesis studies show that the N terminus of tengpin protects a hydrophobic patch in the serpin domain and functions to trap tengpin in its native metastable state. A 13-amino-acid peptide derived from the N terminus is able to mimick the role of the N terminus in stabilizing the native state of tengpinDelta51. Therefore, the function of the N terminus in tengpin resembles protein cofactors that prevent mammalian serpins from spontaneously adopting the latent conformation.  相似文献   

10.
Conformational transition is fundamental to the mechanism of functional regulation in proteins, and serpins (serine protease inhibitors) can provide insight into this process. Serpins are metastable in their native forms, and they ordinarily undergo conformational transition to a stable state only when they form a tight complex with target proteases. The metastable native form is thus considered to be a kinetically trapped folding intermediate. We sought to understand the nature of the serpin kinetic trap as a step toward discovering how conformational transition is regulated. We found that mutations of the B/C beta-barrel of native alpha(1)-antitrypsin, a prototypical serpin, allowed conversion of the molecule into a more stable state. A 2.2 A resolution crystal structure of the stable form (PDB code, ) showed that the reactive site loop is inserted into an A beta-sheet, as in the latent plasminogen activator inhibitor-1. Mutational analyses suggest strongly that interactions not found in the final stable form cause the kinetic trap in serpin protein folding.  相似文献   

11.
The native form of inhibitory serpins (serine protease inhibitors) is not in the thermodynamically most stable state but in a metastable state, which is critical to inhibitory functions. To understand structural basis and functional roles of the native metastability of inhibitory serpins, we have been characterizing stabilizing mutations of human alpha1-antitrypsin, a prototype inhibitory serpin. One of the sites that has been shown to be critical in stability and inhibitory activity of alpha1-antitrypsin is Lys335. In the present study, detailed roles of this lysine were analyzed by assessing the effects of 13 different amino acid substitutions. Results suggest that size and architect of the side chains at the 335 site determine the metastability of alpha1-antitrypsin. Moreover, factors such as polarity and flexibility of the side chain at this site, in addition to the metastability, seem to be critical for the inhibitory activity. Substitutions of the lysine at equivalent positions in two other inhibitory serpins, human alpha1-antichymotrypsin and human antithrombin III, also increased stability and decreased inhibitory activity toward alpha-chymotrypsin and thrombin, respectively. These results and characteristics of lysine side chain, such as flexibility, polarity, and the energetic cost upon burial, suggest that this lysine is one of the structural designs in regulating metastability and function of inhibitory serpins in general.  相似文献   

12.
The native form of some proteins such as strained plasma serpins (serine protease inhibitors) and the spring-loaded viral membrane fusion proteins are in a metastable state. The metastable native form is thought to be a folding intermediate in which conversion into the most stable state is blocked by a very high kinetic barrier. In an effort to understand how the spontaneous conversion of the metastable native form into the most stable state is prevented, we designed mutations of alpha1-antitrypsin, a prototype serpin, which can bypass the folding barrier. Extending the reactive center loop of alpha1-antitrypsin converts the molecule into a more stable state. Remarkably, a 30-residue loop extension allows conversion into an extremely stable state, which is comparable to the relaxed cleaved form. Biochemical data strongly suggest that the strain release is due to the insertion of the reactive center loop into the major beta-sheet, A sheet, as in the known stable conformations of serpins. Our results clearly show that extending the reactive center loop is sufficient to bypass the folding barrier of alpha1-antitrypsin and suggest that the constrain held by polypeptide connection prevents the conversion of the native form into the lowest energy state.  相似文献   

13.
Protein misfolding and aggregation play an integral role in many diseases. The misfolding of the serpin (SERine Proteinase INhibitor) alpha1-antitrypsin results in the accumulation of insoluble polymers within hepatocytes and alpha1-antitrypsin deficiency in plasma, predisposing patients to liver cirrhosis and emphysema. We have examined the effect of three naturally occurring osmolytes, sarcosine, glycine betaine and trimethylamine N-oxide, on conformational changes in alpha1-antitrypsin. All three solutes protected native alpha1-antitrypsin against thermally induced polymerisation and inactivation in a concentration-dependent manner. Further spectroscopic analysis showed that sarcosine stabilises the native conformation of alpha1-antitrypsin, thus hindering its conversion to an intermediate state and subsequent polymerisation. On refolding in the presence of sarcosine, alpha1-antitrypsin formed a heterogeneous population, with increasing proportions of molecules adopting an inactive conformation in higher concentrations of the osmolyte. These data show that sarcosine can be used to prevent abnormal structural changes in native alpha1-antitrypsin, but is ineffective in facilitating the correct folding of the protein. The implications of these results in the context of conformational changes and states adopted by alpha1-antitrypsin are discussed.  相似文献   

14.
Native antithrombin (AT) has an inactive reactive site loop conformation unless it is activated by a unique pentasaccharide fragment of heparin (H(5)). Structural data suggests that this may be due to preinsertion of two N-terminal residues of the reactive site loop of the serpin into the A-beta-sheet of the molecule. Relative to alpha(1)-antitrypsin, the reactive site loop of AT has three additional residues, Arg(399), Val(400), and Thr(401), at the C-terminal P' end of the loop. To determine whether a longer reactive site loop of AT is responsible for loop preinsertion in the native conformation, mutants of the serpin were expressed in which these residues were individually or in combination deleted. Kinetic analysis suggested that deletion of two residues, Val(400) and Thr(401), changed the solution equilibrium of the serpin in favor of the active conformation, thereby enhancing the inhibition of factor Xa by an order of magnitude independent of H(5). Interestingly, the reactivity of this mutant with thrombin was impaired by the same order of magnitude in the absence, but not in the presence of H(5). These results suggest that a longer reactive site loop in AT is responsible for its inactive native conformation toward factor Xa, while at same time AT requires this feature to regulate the activity of thrombin.  相似文献   

15.
Most lipases of Gram-negative bacteria require a lipase-specific foldase (Lif) in order to fold in the periplasm into their active, protease-resistant conformation prior to their secretion. The periplasmic domain of the Lif (amino acids 44-353) of Burkholderia glumae was purified as a His-tagged protein, and its function in the folding of lipase was studied in vitro. Refolding of the denatured lipase into its active conformation was dependent on the presence of the Lif. Circular dichroism revealed that the lipase refolded in the absence of Lif into a form with a native-like conformation, which was more stable against heat-induced denaturation than the native form, but was enzymatically inactive. This form of the protein could be activated by adding Lif after several hours, which demonstrates that the function of this chaperone is to help lipase to overcome an energetic barrier in the productive folding pathway rather than to prevent it from entering a non-productive pathway. The Lif was shown to interact with the native lipase in protease-protection experiments as well as by affinity chromatography, consistent with a role of the Lif late in the folding process. These results demonstrate that the Lif functions in a way analogous to the propeptides of many bacterial proteases and indicate that the amino acid sequence of the lipase does not contain all the information required for the protein to adopt its three-dimensional structure.  相似文献   

16.
The native conformation of proteins in the serpin superfamily is metastable. In order to understand why serpins attain the native state instead of more stable conformations we have begun investigations into the equilibrium-unfolding of alpha(1)-antitrypsin. alpha(1)-Antitrypsin contains two tryptophan residues, Trp194 and Trp238, situated on the A and B beta-sheets, respectively. Site-directed mutagenesis was used to construct two single-tryptophan variants. Both variants were fully active and had similar secondary structure and stabilities to alpha(1)-antitrypsin. The denaturation of alpha(1)-antitrypsin and its variants was extremely similar when followed by far-UV CD, indicating the presence of a single intermediate. Fluorescence analysis of the unfolding behavior of each single tryptophan variant indicated that the sole tryptophan residue reported the structural changes within its immediate environment. These data suggest that the A beta-sheet is expanded in the intermediate state whilst no structural change around the B beta-sheet has occurred. In the urea-induced unfolded state, Trp238 does not become fully solvated, suggesting the persistence of structure around this residue. The implications of these data on the folding, misfolding and function of the serpin superfamily are discussed.  相似文献   

17.
Ovalbumin, a member of the serpin superfamily, contains one cystine disulfide (Cys73-Cys120) and four cysteine sulfhydryls (Cys11, Cys30, Cys367, and Cys382) in the native state. To investigate the folding mechanism of ovalbumin, a urea-denatured disulfide isomer with a mispaired disulfide Cys367-Cys382 (D[367-382]) and its derivative (D[367-382/CM-73]) in which a native cystine counterpart of Cys73 is blocked by carboxymethylation were produced. Both the denatured isomers refolded within an instrumental dead time of 4 ms into an initial burst intermediate IN with partially folded conformation. After the initial burst phase, most of the D[367-382] molecules further refolded into the native form. In contrast, upon dilution of D[367-382/CM-73] with the refolding buffer, the protein stayed in the IN state as a stable form, which displayed a partial regain of the native secondary structure and a compact conformation with a similar Stokes radius to the native form. The structural characteristics of IN were clearly differentiated from those of an equilibrium intermediate IA that was produced by dilution with an acidic buffer of urea-denatured ovalbumin; IA showed much more hydrophobic dye binding and a larger Stokes radius than the IN state, despite their indistinguishable far-UV circular dichroic spectra. The non-productive nature of IA highlighted the importance of a compact conformation of the IN state for subsequent native refolding. These observations were consistent with a refolding model of ovalbumin that includes the regain of the partial secondary structure and of the compactness of overall conformation in an initial burst phase before the subsequent native refolding.  相似文献   

18.
19.
Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones are a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more "conventional" chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.  相似文献   

20.
The folding of heat-denatured ovalbumin, a non-inhibitory serpin with a molecular size of 45 kDa, was examined. Ovalbumin was heat-denatured at 80 degrees C under nonreducing conditions at pH 7.5 and then cooled either slowly or rapidly. Slow cooling allowed the heat-denatured ovalbumin to refold to its native structure with subsequent resistance to digestion by trypsin. Upon rapid cooling, by contrast, the heat-denatured molecules assumed the metastable non-native conformations that were susceptible to trypsin. The non-native species were marginally stable for several days at a low temperature, but the molecules were transformed slowly into the native conformation. Considering data from size-exclusion chromatography and from analyses of CD, intrinsic tryptophan fluorescence, and adsorption of the dye 1-anilinonaphthalene-8-sulfonate, we postulated that the non-native species that accumulated upon rapid cooling were compact but structureless globules with disordered side chains collectively as a folding intermediate. Temperature-jumped CD experiments revealed biphasic kinetics for the refolding process of heat-denatured ovalbumin, with the features of increasing and subsequently decreasing amplitude of the rapid and the slow phases, respectively, with the decrease in folding temperature. The temperature dependence of the refolding kinetics indicated that the yield of renaturation was maximal at about 55 degrees C. These findings suggested the kinetic partitioning of heat-denatured ovalbumin between alternative fates, slow renaturation to the native state and rapid collapse to the metastable intermediate state. Analysis of disulfide pairing revealed the formation of a scrambled form with non-native disulfide interactions in both the heat-denatured state and the intermediate state that accumulated upon rapid cooling, suggesting that non-native disulfide pairing is responsible for the kinetic barriers that retard the correct folding of ovalbumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号