首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatoma cells were evaluated using fura-2 as a fluorescent Ca2+ dye. Histamine (0.2-5 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of about 1 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In Ca2+-free medium, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase of a magnitude 7-fold greater than control. Histamine (5 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 5 microM pyrilamine but was not altered by 50 microM cimetidine. Together, this study shows that histamine induced [Ca2+]i increases in human hepatoma cells by stimulating H1, but not H2, histamine receptors. The [Ca2+]i signal was caused by Ca2+ release from thapsigargin-sensitive endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, accompanied by Ca2+ entry.  相似文献   

2.
Chou KJ  Tseng LL  Cheng JS  Wang JL  Fang HC  Lee KC  Su W  Law YP  Jan CR 《Life sciences》2001,69(13):1541-1548
The effect of CP55,940, a presumed CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in Madin-Darby canine kidney cells was examined by using the fluorescent dye fura-2 as a Ca2+ indicator. CP55,940 (2-50 microM) increased [Ca2+]i concentration-dependently with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise and a sustained phase. Extracellular Ca2+ removal decreased the maximum [Ca2+]i signals by 32+/-12%. CP55,940 (20 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists, AM-251 and AM-281. CP55,940 (20 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 86+/-3% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 20 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increases. CP55,940 (20 microM)-induced intracellular Ca2+ release was not inhibited when inositol 1,4,5-trisphosphate formation was abolished by suppressing phospholipase C with 2 microM U73122. Collectively, this study shows that CP,55940 induced significant [Ca2+]i increases in canine renal tubular cells by releasing stored Ca2+ from the thapsigargin-sensitive pools in an inositol 1,4,5-trisphosphate-independent manner, and also by causing extracellular Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors.  相似文献   

3.
The effect of the oxidant t-butyl hydroperoxide on intracellular free levels of Ca2+ ([Ca2+]i) in PC12 pheochromocytoma cells was examined by using fura-2 as a fluorescent dye. t-Butyl hydroperoxide induced an increase in [Ca2+]i in a concentration-dependent fashion between 50-250 microM with an EC50 of 100 microM. The [Ca2+]i signal consisted of a slow rise and a sustained phase. The response was decreased by 65% by removal of extracellular Ca2+. In Ca(2+)-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) abolished 150 microM t-butyl hydroperoxide-induced [Ca2+]i increase, and conversely, pretreatment with t-butyl hydroperoxide abrogated thapsigargin-induced [Ca2+]i increase. The 150 microM t-butyl hydroperoxide-induced [Ca2+]i increase in Ca2+ medium was reduced by 42 +/- 5% by pretreatment with 0.1 microM nicardipine but not by 10 microM verapamil, nifedipine, nimodipine or diltiazem, or by 50 microM La3+ or Ni2+. Pretreatment with 10 microM t-butyl hydroperoxide for 40 min did not affect 10 microM ATP-induced [Ca2+]i increase. Together, the results show that t-butyl hydroperoxide induced significant [Ca2+]i increase in PC12 cells by causing store Ca2+ release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-independent manner and by inducing Ca2+ influx via a nicardipine-sensitive pathway.  相似文献   

4.
The study was undertaken to explore the effect of CP55,940 ((-)-cis-3-[2-Hydroxy4-(1,1-dimethylheptyl) phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), a drug commonly used as a CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in several cell types [Ca2+]i was measured in suspended cells by using the fluorescent dye fura-2 as an indicator. At concentrations between 1-50 microM, CP55,940 increased [Ca2+]i in a concentration-dependent manner with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise, a slow decay, and a sustained phase. CP55940 (10 microM)-induced (Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists (AM-251, N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; AM-281, 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-m3thyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide). Extracellular Ca2+ removal decreased the maximum value of the Ca2+ signals by 50%. CPS5,940 (10 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 80% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 10 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increase. Nifedipine (10 microM) and verapamil (10 microM) did not alter CP55,940 (10 microM)-induced [Ca2+]i increase. CP55, 940 (10 microM)-induced Ca2+ release was not affected when phospholipase C was inhibited by 2 microM U73122 (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione). CP55,940 (5 microM) also increased [Ca22+] in Madin-Darby canine kidney cells, MG63 human osteosarcoma cells, and IMR-32 neuroblastoma cells. Collectively, CP,55940 induced significant [Ca2+]i increases in several cell types by releasing store Ca2+ from thapsigargin-sensitive pools and by causing Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors  相似文献   

5.
Jan CR  Yu CC  Huang JK 《Hormone research》2000,54(3):143-148
BACKGROUND/METHODS: The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of BFTC human bladder cancer cells was explored by using fura-2 as a Ca2+ indicator. RESULTS: Clomiphene at concentrations between 10 and 75 microM increased [Ca2+]i in a concentration-dependent manner and the signal saturated at 50 microM. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by about 40-50% in maximum [Ca2+]i. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 50 microM clomiphene in Ca2+-free medium, suggesting that clomiphene induced capacitative Ca2+ entry. In Ca2+-free medium, pretreatment with 50 microM brefeldin A (to disrupt the Golgi complex Ca2+ store), 1 microM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and CCCP (to uncouple mitochondria) inhibited 85% of clomiphene-induced intracellular Ca2+ release. Conversely, pretreatment with 50 microM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin, thapsigargin or CCCP. The intracellular Ca2+ release was unaltered by inhibiting formation of inositol-1,4,5-trisphosphate (IP3) with 2 mM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; a phospholipase C inhibitor). CONCLUSION: The [Ca2+]i increase induced by 50 microM clomiphene was not affected by 10 microM of nifedipine, verapamil or diltiazem. Collectively, the results suggest that clomiphene releases intracellular Ca2+ in an IP3-independent manner and also activates extracellular Ca2+ influx.  相似文献   

6.
In Madin-Darby canine kidney (MDCK) cells, effect of NPC-15199 on intracellular Ca2+ concentration ([Ca2+]i) was investigated by using fura-2. NPC-15199 (100-1000 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50=500 microM). NPC-15199-induced [Ca2+]i rise was prevented by 70% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM), a mitochondrial uncoupler, and thapsigargin (1 microM), an inhibitor of the endoplasmic reticulum (ER) Ca2(+)-ATPase, caused a monophasic [Ca2+]i rise, respectively, after which the increasing effect of NPC-15199 (1 mM) on [Ca2+]i was substantially attenuated; also, pretreatment with NPC-15199 abolished CCCP- and thapsigargin-induced [Ca2+]i rises. U73122, an inhibitor of phospholipase C, [corrected] abolished 10 microM ATP (but not 1 mM NPC-15199)-induced [Ca2+]i rise. These results suggest that NPC-15199 rapidly increases [Ca2+]i by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via as yet unidentified mechanism(s).  相似文献   

7.
The effect of nordihydroguaiaretic acid (NDGA), a compound commonly used as a lipoxygenases inhibitor, on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells was investigated. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. NDGA increased [Ca2+]i in a concentration-dependent manner with an EC50 of 30 microM. The Ca2+ signal comprised a gradual and sustained increase. Removal of extracellular Ca2+ partly decreased the NDGA-induced [Ca2+]i increase, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and intracellular Ca2+ release. NDGA-induced Ca2+ influx was independently confirmed by measuring NDGA-induced Mn2+ -coupled quench of fura-2 fluorescence. The NDGA-induced Ca2+ influx was not affected by L-type Ca2+ channel blockers. In Ca2+ -free medium, the NDGA-induced [Ca2+]i increase was abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with NDGA abolished thapsigargin-induced [Ca2+]i increase. NDGA-induced intracellular Ca2+ release was not altered by inhibition of phospholipase C. Overnight treatment with 20-50 microM NDGA inhibited cell proliferation rate in a concentration-dependent manner. Several other lipoxygenases inhibitors did not alter [Ca2+]i. Collectively, this study shows that in prostate cells, NDGA induced a [Ca2+]i increase via releasing stored Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity, and by causing Ca2+ influx. NDGA also caused cytotoxicity at higher concentrations.  相似文献   

8.
The study was undertaken to explore the effect of CP55,940 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), a drug commonly used as a CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in MG63 human osteoblast-like epithelial cells. [Ca2+]i was measured in suspended cells by using the fluorescent dye fura-2 as an indicator. At concentrations between 2-20 microM, CP55,940 increased [Ca2+]i in a concentration-dependent manner with an EC50 of 8 microM. The [Ca2+] signal comprised an initial rise, a slow decay, and a sustained phase. CP55940 (10 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists (AM-251, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole3-carboxamide; AM-281, 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide). Extracellular Ca2+ removal decreased the maximum value of the Ca2+ signals by 50%. CP55,940 induced quench of fura-2 fluorescence by Mn2+ (50 microM), suggesting the presence of Ca2+ influx across the plasma membrane. CP55,940 (10 microM)-induced [Ca2+]i increase in Ca(2+)-free medium was inhibited by 84% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 10 microM CP55,940 in Ca(2+)-free medium abolished thapsigargin-induced [Ca2+]i increase. At 1 microM, nifedipine, verapamil, and diltiazem did not alter CP55, 940 (10 microM)-induced [Ca2+]i increase. CP55,940 (20 microM)-induced Ca2+ release was not affected when phospholipase C was inhibited by 2 microM U73122 (1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino) hexyl)-1H-pyrrole-2,5-dione). CP55,940 (20 microM) did not induce acute cell death after incubation for 30 min as assayed by trypan blue exclusion. Collectively, CP55,940 induced significant [Ca2+]i increases in osteoblasts by releasing store Ca2+ from thapsigargin-sensitive stores and by causing Ca2+ entry. The CP55,940's action appears to be independent of stimulation of CB1 cannabinoid receptors.  相似文献   

9.
In Madin-Darby canine kidney (MDCK) cells, the effect of nortriptyline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Nortriptyline (> 10 microM) caused a rapid increase of [Ca2+]i in a concentration-dependent manner (EC50 = 75 microM). Nortriptyline-induced [Ca2+]i increase was prevented by 40% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i, increase, after which the increasing effect of nortriptyline on [Ca2+], was abolished; also, pretreatment with nortriptyline reduced a large portion of thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, abolished ATP (but not nortriptyline)-induced [Ca2+]i increase. Overnight incubation with 10 microM nortriptyline decreased cell viability by 16%, and 50 microM nortriptyline killed all cells. Prechelation of cytosolic Ca2+ with BAPTA did not alter nortriptyline-induced cell death. These findings suggest that nortriptyline rapidly increased [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and was cytotoxic at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

10.
Jan CR  Jiann BP  Lu YC  Chang HT  Huang JK 《Life sciences》2002,71(26):3081-3090
In canine renal tubular cells, effect of olvanil, a presumed cannabinoid and vanilloid receptor modulator, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Olvanil (5-100 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. Olvanil-induced [Ca2+]i rise was prevented by 70 and 90% by removal of extracellular Ca2+ and La3+, respectively, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of olvanil on [Ca2+]i was abolished; also, pretreatment with olvanil partly reduced thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phoispholipase C, abrogated ATP-, but partly inhibited olvanil-, induced [Ca2+]i rise. Two cannabinoid receptor antagonists (AM251 and AM281; 5 microM) and a vanilloid receptor antagonist (capsazepine; 100 microM) did not alter olvanil (50 microM)-induced [Ca2+]i rise. These results suggest that olvanil rapidly increases [Ca2+]i in renal tubular cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via mechanism(s) independent of stimulation of cannabinoid and vanilloid receptors.  相似文献   

11.
Jan CR  Jiann BP  Lu YC  Chang HT  Su W  Chen WC  Yu CC  Huang JK 《Life sciences》2002,70(11):1337-1345
The effects of triethyltin on Ca2+ mobilization in human PC3 prostate cancer cells have been explored. Triethyltin increased [Ca2+]i at concentrations larger than 3 microM with an EC50 of 30 microM. Within 5 min, the [Ca2+]i signal was composed of a gradual rise and a sustained phase. The [Ca2+]i signal was reduced by half by removing extracellular Ca2+. The triethyltin-induced [Ca2+]i increases were inhibited by 40% by 10 microM nifedipine, nimodipine and nicardipine, but were not affected by 10 microM of verapamil or diltiazem. In Ca2+-free medium, pretreatment with thapsigargin (1 microM), an endoplasmic reticulum Ca+ pump inhibitor, reduced 200 microM triethyltin-induced Ca+ increases by 50%. Pretreatment with U73122 (2 microM) to inhibit phospholipase C did not alter 200 microM triethyltin-induced [Ca2+]i increases. Incubation with triethyltin at a concentration that did not increase [Ca2+]i (1 microM) in Ca2+-containing medium for 3 min potentiated ATP (10 microM)- or bradykinin (1 microLM)-induced [Ca2+]i increases by 41 +/- 3% and 51 +/- 2%, respectively. Collectively, this study shows that the environmental toxicant triethyltin altered Ca2+ handling in PC3 prostate cancer cells in a concentration-dependent manner: at higher concentrations it increased basal [Ca2+]i; and at lower concentrations it potentiated agonists-induced [Ca2+]i increases.  相似文献   

12.
The regulation of the intracellular free Mg2+ concentration ([Mg2+]i) was monitored in rat sublingual mucous acini using dual wavelength microfluorometry of the Mg(2+)-sensitive dye mag-fura-2. Acini attached to coverslips and superfused continuously with a Mg(2+)-containing medium (0.8 mM) have a steady-state [Mg2+]i of 0.35 +/- 0.01 mM. Adjusting the extracellular Mg2+ concentration to 0 and 10 mM or removing extracellular Na+ did not alter the resting [Mg2+]i. Stimulation with the Ca(2+)-mobilizing, muscarinic agonist, carbachol, induced a sustained increase in [Mg2+]i (approximately 50%; t1/2 < 20 s; Kd approximately 1.5 microM), the magnitude and the duration of which were unchanged in Mg(2+)-depleted medium indicating that the rise in [Mg2+]i was generated by Mg2+ release from an intracellular Mg2+ pool. Forskolin, which increases the intracellular cAMP content, produced a small, transient increase in the [Mg2+]i (< 10%). Muscarinic stimulation in a Ca(2+)-free medium blunted the initial increase in [Mg2+]i by approximately 50%, whereas the sustained increase in [Mg2+]i was lost. When the muscarinic-induced increase in [Ca2+]i was blocked by 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate, an inhibitor of the agonist-sensitive intracellular Ca2+ release pathway, both the initial and the sustained phases of the increase in [Mg2+]i were virtually eliminated. Thapsigargin and 2,5-di-(terbutyl)-1,4-benzohydroquinone, which increase [Ca2+]i by inhibiting microsomal Ca(2+)-ATPase, caused a dramatic increase in [Mg2+]i. Stimulation in a Na(+)-free medium or in the presence of bumetanide, an inhibitor of Na+/K+/2Cl- cotransport, blunted the agonist-induced rise in [Mg2+]i (approximately 50%), whereas ouabain, a Na+,K(+)-ATPase inhibitor, had no significant effect. FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), a mitochondrial uncoupler, mobilized an intracellular Mg2+ pool as well. The carbachol-induced increase in [Mg2+]i was markedly inhibited by FCCP (approximately 80%), suggesting that the same pool(s) of Mg2+ were primarily involved. The above results provide strong evidence that Ca(2+)-mobilizing agonists increase cytoplasmic free [Mg2+] by releasing an intracellular pool of Mg2+ that is associated with a rise in the [Na+]i.  相似文献   

13.
Jan CR 《Life sciences》2005,77(5):589-599
In Madin-Darby canine kidney (MDCK) cells, the effect of p-chloroamphetamine, a neurotoxin that depletes intracellular serotonin, on intracellular Ca2+ concentration ([Ca2+]i) and viability was measured by using the Ca2+-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium. p-Chloroamphetamine (> or = 10 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. p-Chloroamphetamine-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. p-Chloroamphetamine-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which p-chloroamphetamine failed to increase [Ca2+]i; also, pretreatment with p-chloroamphetamine reduced 50% of thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not p-chloroamphetamine)-induced [Ca2+]i rise. Overnight incubation with 1-500 microM p-chloroamphetamine decreased cell viability. These findings suggest that p-chloroamphetamine evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic.  相似文献   

14.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in A10 smooth muscle cells was explored by using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 10-50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 of 20 microM. External Ca2+ removal reduced the Ca2+ signal by 75%. Addition of 3 mM Ca2+ increased [Ca2+]i in cells pretreated with fendiline in Ca2+-free medium. The 50 microM fendiline-induced [Ca2+]i increase in Ca2+-containing medium was inhibited by 10 microM of La3+, nifedipine, or verapamil. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store partly inhibited 50 microM fendiline-induced Ca2+ release; whereas pretreatment with 50 microM fendiline abolished 1 microM thapsigargin-induced Ca2+ release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 50 microM fendiline-induced Ca2+ release. Incubation with 50 microM fendiline for 10-30 min decreased cell viability by 10-20%. Together, the findings indicate that in smooth muscle cells fendiline induced [Ca2+]i increases. Fendiline acted by activating Ca2+ influx via L-type Ca2+ channels, and by releasing internal Ca2+ in a phospholipase C-independent manner. Prolonged exposure of cells to fendiline induced cell death.  相似文献   

15.
In the absence of external Ca2+, 100 microM histamine evoked a transient increase in intracellular Ca2+ ([Ca2+]i), and subsequent addition of Ca2+ to the medium resulted in a sustained increase in [Ca2+]i in fura-2-loaded human gingival fibroblasts. These Ca2+ mobilizations are attributed to Ca2+ release from intracellular stores and Ca2+ entry, respectively. When the histamine H1 antagonist chlorpheniramine was added after the histamine-induced transient increase in [Ca2+]i, the Ca2+ entry induced by the addition of Ca2+ was inhibited. In the fibroblasts pretreated with cyclooxygenase inhibitors, indomethacin (1 microM) or aspirin (100 microM), histamine-induced Ca2+ entry was significantly inhibited, but not the transient [Ca2+]i increase. These results suggest that the histamine-induced Ca2+ entry requires the continuous binding of histamine to the H1 receptors and is regulated by prostaglandins, which are probably produced due to the H1 receptor activation.  相似文献   

16.
Jan CR  Tseng CJ 《Life sciences》2000,66(18):1753-1762
The effect of nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells has been investigated. NDGA (10-100 microM) increased [Ca2+]i concentration-dependently. The [Ca2+]i increase comprised an initial slow rise and a plateau over a time period of 5 min. Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM NDGA and abolished that induced by 10 microM NDGA. In Ca(2+)-free medium, pretreatment with 0.1 mM NDGA for 12 min abolished the [Ca2+]i increase induced by the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM) and the endoplasmic reticulum (ER) Ca2+ pump inhibitor thapsigargin (1 microM). However, 0.1 mM NDGA still increased [Ca2+]i after Ca2+ stores had been depleted by pretreating with 2 microM CCCP, 1 microM thapsigargin and 0.1 mM cyclopiazonic acid. NDGA (50 microM) activated Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength, which was almost abolished by 50 microM La3+. This implies NDGA induced Ca2+ influx mainly via a La(3+)-sensitive pathway. Consistently, 50 microM La3+ pretreatment inhibited 0.1 mM NDGA-induced [Ca2+]i increase. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 0.1 mM NDGA in Ca(2+)-free medium, suggesting NDGA activated capacitative Ca2+ entry. Pretreatment with 0.1 mM NDGA for 200 s prior to Ca2+ did not alter 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 reduced 0.1 mM NDGA-induced Ca2+ release by 65%, but inhibiting phospholipase C with 2 microM U73122 had little effect. This suggests NDGA-induced Ca2+ release was independent of inositol 1,4,5-trisphosphate (IP3), but was modulated by phospholipase A2.  相似文献   

17.
A Ishihata  M Endoh 《Life sciences》1991,48(6):583-591
Confluent monolayers of human umbilical vein endothelial cells subcultured on glass coverslips were loaded with the fluorescent Ca2+ indicator, fura-2. Changes in fura-2 fluorescence were detected by means of a fluorescence spectrophotometer. Both ATP and ADP (0.3-100 microM) caused a concentration-dependent transient peak response of the intracellular free calcium concentration ([Ca2+]i), followed by a lower sustained response. AMP and adenosine did not induce detectable changes in [Ca2+]i. The sustained response to ATP was abolished by superfusion with the Ca2(+)-free solution (with 1 mM EGTA), while the transient peak response was uninfluenced. The transient peak response to ATP (30 microM) was inhibited by pre-exposure to ATP in a graded manner depending on the concentration of ATP. The response to ATP recovered after washout for 20 min with the solution containing Ca2+, but not with the Ca2(+)-free solution. The transient peak response to ATP was markedly reduced by preceding exposure to histamine, while the response to histamine was not influenced by pre-exposure to ATP. These findings indicate that depletion and refilling of the ATP-sensitive intracellular Ca2+ store may be responsible for the desensitization and recovery of the ATP-induced [Ca2+]i response. The pharmacological characteristics of the ATP-sensitive intracellular Ca2+ store seem different from those of the histamine-sensitive store.  相似文献   

18.
Mercury-induced Ca2+ increase and cytotoxicity in renal tubular cells   总被引:1,自引:0,他引:1  
Yeh JH  Chung HM  Ho CM  Jan CR 《Life sciences》2004,74(16):2075-2083
The effect of mercury (Hg2+), a known nephrotoxicant, on intracellular free Ca2+ levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was explored. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. Hg2+ increased [Ca2+]i in a concentration-dependent manner with an EC50 of 6 microM. The Ca2+ signal comprised a gradual increase. Removal of extracellular Ca2+ decreased the Hg2+ -induced [Ca2+]i increase by 27%, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and store Ca2+ release. In Ca2+ -free medium, the Hg2+ -induced [Ca2+]i increase was nearly abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with Hg2+ abolished thapsigargin-induced Ca2+ increase. Hg2+ -induced Ca2+ release was not altered by inhibition of phospholipase C but was potentiated by activation of protein kinase C. Overnight treatment with 1 microM Hg2+ did not alter cell proliferation rate and mitochondrial activity, but 10 microM Hg2+ killed all cells. Collectively, this study shows that Hg2+ induced protein kinase C-regulated [Ca2+]i increases in renal tubular cells via releasing store Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity. Hg2+ also caused cytotoxicity at higher concentrations.  相似文献   

19.
《The Journal of cell biology》1986,103(6):2379-2387
Considerable evidence suggests that Ca2+ modulates endothelial cell metabolic and morphologic responses to mediators of inflammation. We have used the fluorescent Ca2+ indicator, quin2, to monitor endothelial cell cytosolic free Ca2+, [Ca2+]i, in cultured human umbilical vein endothelial cells. Histamine stimulated an increase in [Ca2+]i from a resting level of 111 +/- 4 nM (mean +/- SEM, n = 10) to micromolar levels; maximal and half-maximal responses were elicited by 10(-4) M and 5 X 10(-6) M histamine, respectively. The rise in [Ca2+]i occurred with no detectable latency, attained peak values 15-30 s after addition of stimulus, and decayed to a sustained elevation of [Ca2+]i two- to threefold resting. H1 receptor specificity was demonstrated for the histamine-stimulated changes in [Ca2+]i. Experiments in Ca2+-free medium and in the presence of pyrilamine or the Ca2+ entry blockers Co2+ or Mn2+, indicated that Ca2+ mobilization from intracellular pools accounts for the initial rise, whereas influx of extracellular Ca2+ and continued H1 receptor occupancy are required for sustained elevation of [Ca2+]i. Ionomycin-sensitive intracellular Ca2+ stores were completely depleted by 4 min of exposure to 5 X 10(-6) M histamine. Verapamil or depolarization of endothelial cells in 120 mM K+ did not alter resting or histamine-stimulated [Ca2+]i, suggesting that histamine-elicited changes are not mediated by Ca2+ influx through voltage-gated channels. Endothelial cells grown on polycarbonate filters restricted the diffusion of a trypan blue-albumin complex; histamine (through an H1- selective effect) promoted trypan blue-albumin diffusion with a concentration dependency similar to that for the histamine-elicited rise in [Ca2+]i. Exposure of endothelial cells to histamine (10(-5) M) or ionomycin (10(-7) M) was associated with a decline in endothelial F- actin (relative F-actin content, 0.76 +/- 0.07 vs. 1.00 +/- 0.05; histamine vs. control, P less than 0.05; relative F-actin content, 0.72 +/- 0.06 vs. 1.00 +/- 0.05; ionomycin vs. control, P less than 0.01). The data support a role for cytosolic calcium in the regulation of endothelial shape change and vessel wall permeability in response to histamine.  相似文献   

20.
We recently reported that prostaglandin E2 (PGE2) stimulates phosphoinositide metabolism accompanied by an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cultured bovine adrenal chromaffin cells. In the present study, temporal and spatial changes in [Ca2+]i induced by PGE2 in fura-2-loaded individual cells were investigated by digital image microscopy and were compared with those induced by nicotine and histamine. Image analysis of single cells revealed that responses to PGE2 showed asynchrony with the onset of [Ca2+]i changes. After a lag time of 10-30 s, PGE2-induced [Ca2+]i changes took a similar prolonged time course in almost all cells: a rapid rise followed by a slower decline to the basal level over 5 min. Few cells exhibited oscillations in [Ca2+]i. In contrast, nicotine and histamine induced rapid and transient [Ca2+]i changes, and these [Ca2+]i changes were characteristic of each stimulant. Whereas pretreatment of the cells with pertussis toxin (100 ng/ml, 6 h) did not block the response to any of these stimulants, treatment with 12-O-tetradecanoylphorbol 13-acetate (100 nM, 10 min) completely abolished [Ca2+]i changes elicited by PGE2 and histamine. In a Ca2(+)-free medium containing 3 mM EGTA, or in medium to which La3+ was added, the [Ca2+]i response to nicotine disappeared, but that to histamine was not affected significantly. Under the same conditions, the percentage of the cells that responded to PGE2 was reduced to 37% and the prolonged [Ca2+]i changes induced by PGE2 became transient in responding cells, suggesting that the maintained [Ca2+]i increase seen in normal medium is the result of a PGE2-stimulated entry of extracellular Ca2+. Whereas the organic Ca2(+)-channel blocker nicardipine inhibited [Ca2+]i changes by all stimulants at 10 microM, these [Ca2+]i changes were not affected by any of the organic Ca2(+)-channel blockers, i.e., verapamil, diltiazem, nifedipine, and nicardipine, at 1 microM, a concentration high enough to inhibit voltage-sensitive Ca2+ channels. These results demonstrate that PGE2 may promote Ca2+ entry with concomitant release of Ca2+ from intracellular stores and that the mechanism(s) triggered by PGE2 is apparently different from that by histamine or nicotine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号