首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five untrained females having no history of heat exposure worked in a cool (16-20 degrees C db, 28% rh) environment on day 1 and a warm environment on day 2 (45 degrees C db, 28% rh). Exercise level (bicycle ergometer) was 30% of individual Vo2 max values and work time on both days was 45 min. Venous blood samples were obtained at rest, after 40 min of exercise and 25 min after exercise ceased. Analysis of blood samples indicated an 8.3% increase in Hct during exercise on day 1 and a plasma volume reduction of 12.8% though total circulating protein increased 11.5%. Except for K+ all parameters approximated control values within 25 min postexercise. On day 2, exercise in heat caused a 12% increase in Hct and a plasma volume reduction of 17.7%. Mean total protein did not significantly change from resting values. These data indicated that for a given % Vo2 max, untrained females suffer considerably greater reductions in plasma volumes than do exercised males. Similar to males, dilatation of the cutaneous vascular bed in unacclimatized females resulted in loss of protein from the vascular volume.  相似文献   

2.
Thermoregulatory responses were studied in seven women during two separate experimental protocols in the follicular (F, days 4-7) phase and during the luteal (L, days 19-22) phase of the menstrual cycle. Continuous measurements of esophageal temperature (Tes), mean skin temperature (Tsk), oxygen uptake and forearm sweating (ms) were made during all experiments. Protocol I involved both passive heat exposure (3 h) and cycle exercise at approximately 80% VO2 peak during which the environmental chamber was controlled at Ta = 50.0 degrees C, rh = 14% (Pw = 1.7 kPa). In protocol II subjects were tested during thirty-five minutes of exercise at approximately 85% VO2 peak at Ta = 35 degrees C and rh = 25% (Pw = 1.4 kPa). The normal L increase in resting Tes (approximately 0.3 degrees C) occurred in all seven subjects. Tsk was higher during L than F in all experiments conducted at 50 degrees C. During exercise and passive heat exposure, the Tes threshold for sweating was higher in L, with no change in the thermosensitivity (slope) of ms to Tes between menstrual cycle phases. This rightward or upward shift in Tes threshold for initiation of sweating averaged 0.5 degrees C for all experiments. The data indicate the luteal phase modulation in the control of sweating in healthy women is also apparent during severe exercise and/or heat stress.  相似文献   

3.
This study was undertaken to investigate whether part of the ammonia formed during muscular exercise was excreted with the sweat. Male medical students volunteered for the experiment. They exercised 30 min on a bicycle ergometer at 80 and 40% of the predetermined maximal O2 uptake (VO2max). Exercise at 80% VO2max was performed twice, at room temperature (20 degrees C) and in a cold room (0 degrees C), whereas exercise at 40% was performed only at room temperature (20 degrees C). Blood was collected from the antecubital vein immediately before and after exercise. Sweat was collected from the hypogastric region by use of gauze pads. It was shown that the plasma ammonia level was elevated after exercise at 80% VO2max and remained stable after exercise at 40% VO2max. The volume of sweat produced during exercise at 80% VO2max at 20 degrees C was 428 +/- 138 ml and at 0 degrees C 245 +/- 86 ml and during exercise at 40% VO2max was 183 +/- 69 ml. The ammonia concentration in the sweat after exercise at 80% VO2max at 20 degrees C was 7,140 mumol/l and at 0 degrees C 11,816 mumol/l. After exercise at 40% VO2max, it was 2,076 mumol/l. The total ammonia lost through the sweat during exercise at 80% VO2max was similar at both temperatures, despite the difference in the sweat volume (at 20 degrees C, 3,360 +/- 2,080 mumol; at 0 degrees C, 3,310 +/- 1,250 mumol). During exercise at 40% VO2max, it was 350 +/- 230 mumol. These results show that part of ammonia formed during exercise is lost with sweat. The amount lost increases with increased work rate and the plasma ammonia concentration.  相似文献   

4.
Thirteen male volunteers performed cycle ergometer maximal oxygen uptake (VO2max tests) in moderate (21 degrees C, 30% rh) and hot (49 degrees C, 20% rh) environments, before and after a 9-day heat acclimation program. This program resulted in significantly decreased (P less than 0.01) final heart rate (24 bt X min-1) and rectal temperature (0.4 degrees C) from the first to last day of acclimation. The VO2max was lower (P less than 0.01) in the hot environment relative to the moderate environment both before (8%) and after (7%) acclimation with no significant difference (P greater than 0.05) shown for maximal power output (PO max, watts) between environments either before or after acclimation. The VO2max was higher (P less than 0.01) by 4% after acclimation in both environments. Also, PO max was higher (P less than 0.05) after acclimation in both the moderate (4%) and hot (2%) environments. The reduction in VO2max in the hot compared to moderate environment was not related to the difference in core temperature at VO2max between moderate and hot trials, nor was it strongly related with aerobic fitness level. These findings indicate that heat stress, per se, reduced the VO2max. Further, the reduction in VO2max due to heat was not affect be state of heat acclimation, the degree of elevation in core temperature, or level of aerobic fitness.  相似文献   

5.
We studied the effects of autologous erythrocyte infusion on blood volume and thermoregulation during exercise in the heat. By use of a double-blind design, nine unacclimated male subjects were infused with either 600 ml of a NaCl-glucose-phosphate solution containing a approximately 50% hematocrit (n = 6, reinfusion) or 600 ml of this solution only (n = 3, saline). A heat stress test (HST) was attempted approximately 2-wk pre- and 48-h postinfusion during the late spring months. After 30 min of rest in a 20 degrees C antechamber, the HST consisted of a 120-min exposure (2 repeats of 15 min rest and 45 min treadmill walking) in a hot (35 degrees C, 45% rh) environment while euhydrated. Erythrocyte volume (RCV, 51Cr) and plasma volume (PV, 125I) were measured 24 h before each HST, and maximal O2 uptake (VO2max) was measured 24 h after each HST. Generally, no significant effects were found for the saline group. For the reinfusion group, RCV (11%, P less than 0.01) and VO2max (11%, P less than 0.05) increased after infusion, and the following observations were made: 1) the increased RCV was associated with a reduction in PV to maintain the same blood volume as during the preinfusion measurements; 2) polycythemia reduced total circulating protein but did not alter F-cell ratio, plasma osmolality, plasma protein content, or plasma lactate at rest or during exercise-heat stress; 3) polycythemia did not change the volume of fluid entering the intravascular space from rest to exercise-heat stress; and 4) polycythemia tended to reduce the rate of heat storage during exercise-heat stress.  相似文献   

6.
The effect of slightly lowered body temperature on endurance time and possibly related physiological factors was studied in seven male volunteers exercising on a cycle ergometer at an ambient temperature (Ta) of 18 degrees C. Work load was increased to 40% in a stepwise manner (phase I, min 0-16) followed by a period at 80% of peak oxygen consumption (VO2) sustained to exhaustion. On one day, exercise was preceded by a double cold exposure (precooling test, PRET), resulting in a 204-kJ/m2 negative heat storage and a 4 and 0.2 degrees C lower mean skin and core temperature at the start of exercise compared with the control test (CONT). Core temperature dropped further during exercise in PRET. Endurance time at 80% of peak VO2 was increased by 12% (P less than 0.05) in PRET. Heart rate (HR) was decreased throughout PRET (P less than 0.05); oxygen pulse and arteriovenous O2 difference were significantly increased in phase I of PRET, whereas the PRET-CONT differences in stroke volume and cardiac output were not significant. In phase II of PRET (min 16-28, heavy exercise) sweat rate (SR) and heat conductivity, indicating forearm blood flow, were lower (-39%, P less than 0.001; -37%). Pedal rate (PR) was 9% lower (P less than 0.01) in phase II of PRET. At the termination of exercise, PRET-CONT differences in HR, SR, and PR had disappeared.  相似文献   

7.
We examined the plasma volume changes associated with a protocol of either exercise or controlled rest under identical positional and ambient conditions. Nine healthy adult males rode (E) and on another occasion sat quietly (C) on a cycle ergometer for 30 min. Ten minutes of cycle exercise immediately followed the resting C protocol. Ambient temperature was 30 degrees C (rh = 35%) and exercise load was equal to 50% of peak VO2. Venous blood samples were obtained with subjects both in the supine and seated positions prior to all experiments. Additional blood was drawn during minutes 1, 5, 10, and 30 in both experimental conditions. A final sample was taken during C after the 10 min exercise. Moving from the supine to a seated position resulted in an average loss of 162 ml of plasma across all experiments. During the E condition a further reduction in plasma volume (76 ml) occurred by one minute of exercise. Plasma volume stabilized by 5 min of exercise under the E protocol. During the C condition, subsequent fluid loss (98 ml) was not apparent until 10 min after the first seated sample and totalled 176 ml at the end of 30 min of rest. Ten minutes of cycling at the end of the C experiment resulted in a further plasma volume reduction of 137 ml. Plasma protein and albumin contents decreased by 5 min of exercise in E and by 30 min of rest in C. [Na+] and [Cl-] did not change in either condition but a rapid increase in [K+] during exercise indicated an addition of potassium to the vascular volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Fifteen male endurance athletes were studied to determine the effect of a glucose polymer (GP) diet supplement on physiological and perceptual responses to successive swimming, cycling and running exercise. Thirty min of swimming, cycling and running at 70% VO2max, followed by a run to exhaustion at 90% VO2max was performed after one week of training under two dietary conditions: 1) GP (230 g of GP consumed daily) and 2) placebo (P, saccharin-sweetened supplement consumed daily). During GP, daily carbohydrate (CHO) intake was higher (p less than 0.05) by 173 g or 14% of energy intake than during P, but total energy intake was not significantly different. During 90 min of exercise, CHO utilization and blood glucose were significantly higher under GP than P by an average of 20.2% and 14.5%, respectively, but heart rate, ventilation, oxygen uptake, ratings of perceived exertion, and plasma lactate were not different. Run time to exhaustion at 90% VO2max was significantly longer by 1.2 min (23%) under GP. The results suggest that a GP diet supplement may be of value during endurance exercise by increasing the availability of CHO.  相似文献   

9.
This study examined the effects of hypohydration on plasma volume and red cell volume during rest in a comfortable (20 degrees C, 40% relative humidity) and exercise in a hot-dry (49 degrees C, 20% relative humidity) environment. A group of six male and six female volunteers [matched for maximal O2 uptake (VO2 max)] completed two test sessions following a 10-day heat acclimation program. One test session was completed when subjects were euhydrated and the other when subjects were hypohydrated (-5% from base-line body wt). The test sessions consisted of rest for 30 min in a 20 degrees C antechamber, followed by two 25-min bouts of treadmill walking (approximately 30% of VO2 max) in the heat, interspersed by 10 min of rest. No significant differences were found between the genders for the examined variables. At rest, hypohydration elicited a 5% decrease in plasma volume with less than 1% change in red cell volume. During exercise, plasma volume increased by 4% when subjects were euhydrated and decreased by 4% when subjects were hypohydrated. These percent changes in plasma volume values were significantly (P less than 0.01) different between the euhydration and hypohydration tests. Although red cell volume remained fairly constant during the euhydration test, these values were significantly (P less than 0.01) lower when hypohydrated during exercise. We conclude that hydration level alters vascular fluid shifts during exercise in a hot environment; hemodilution occurs when euhydrated and hemoconcentration when hypohydrated during light intensity exercise for this group of fit men and women.  相似文献   

10.
This study investigates the effects of a short-term aerobic training program in a hot environment on thermoregulation, blood parameters, sweat secretion and composition in tropic-dwellers who have been exposed to passive heat. Sixteen healthy Malaysian-Malay male volunteers underwent heat acclimation (HA) by exercising on a bicycle ergometer at 60% of VO2max for 60 min each day in a hot environment (Ta: 31.1+/-0.1 degrees C, rh: 70.0+/-4.4%) for 14 days. All parameters mentioned above were recorded on Day 1 and at the end of HA (Day 16). On these two days, subjects rested for 10 min, then cycled at 60% of VO2max for 60 min and rested again for 20 min (recovery) in an improvised heat chamber. Rectal temperature (Tre), mean skin temperature (Tsk) heart rate (HR), ratings of perceived exertion (RPE), thermal sensation (TS), local sweat rate and percent dehydration were recorded during the test. Sweat concentration was analysed for sodium [Na+]sweat and potassium. Blood samples were analysed for biochemical changes, electrolytes and hematologic indices. Urine samples were collected before and after each test and analysed for electrolytes.After the period of acclimation the percent dehydration during exercise significantly increased from 1.77+/-0.09% (Day 1) to 2.14+/-0.07% (Day 16). Resting levels of hemoglobin, hematocrit and red blood cells decreased significantly while [Na+]sweat increased significantly. For Tre and Tsk there were no differences at rest. Tre, HR, RPE, TS, plasma lactate concentration, hemoglobin and hematocrit at the 40th min of exercise were significantly lower after the period of acclimation but mean corpuscular hemoglobin and serum osmolality were significantly higher while no difference was seen in [Na+]sweat and Tsk. It can be concluded that tropic-dwelling subjects, although exposed to prolonged passive heat exposure, were not fully heat acclimatized. To achieve further HA, they should gradually expose themselves to exercise-heat stress in a hot environment.  相似文献   

11.
We investigated whether menstrual cycle phase would affect temperature regulation during an endurance exercise bout performed at room temperature (Ta) of 22 degrees C and 60% relative humidity. Nine eumenorrheic women [age 27.2 +/- 3.7 yr, peak O2 uptake (VO2) 2.52 +/- 0.35 l/min] performed 60 min of cycle exercise at 65% of peak VO2. Subjects were tested in both midfollicular (F) and midluteal (L) phases, although one woman did not show a rise in serum progesterone (P4) that is typically evident 1 wk after ovulation. VO2, rectal (Tre) and skin (Tsk) temperatures, heart rates (HR), and ratings of perceived exertion (RPE) were measured throughout exercise. Sweat loss (SL) was estimated from pre- and postexercise body weight differences. VO2, SL, and Tsk were not affected by menstrual cycle phase. Preexercise Tre was 0.3 degrees C higher during L than during F conditions, and this difference increased to 0.6 degrees C by the end of exercise (P less than 0.01). Compared with F, HRs during L were approximately 10 beats/min greater (P less than 0.001) at all times, whereas RPE responses were significantly greater (P less than 0.01) by 50 min of cycling. No differences in any measured values were found in the subject whose P4 was low in both test conditions. Results indicate that thermoregulation (specifically, regulation of Tre), as well as cardiovascular strain and perception of exercise, was adversely affected during the L phase.  相似文献   

12.
In an effort to assess the effects of environmental heat stress on muscle metabolism during exercise, 6 men performed work in the heat (Tdb = 44 degrees C, RH = 15%) and cold (Tdb = 9 degrees C, RH = 55%). Exercise consisted of three 15-min cycling bouts at 70 to 85% VO2max, with 10-min rest between each. Muscle biopsies obtained from the vastus lateralis before and after each work bout were analyzed for glycogen and triglyceride content. Venous blood samples drawn before and after exercise were assayed for lactate, glucose, free fatty acids, hemoglobin, and hematocrit. Oxygen uptake, heart rates and rectal temperatures were all significantly higher during exercise in the heat. Blood lactate concentration was roughly twice as great during the heat experiments as that measured in the 9 degrees C environment. Muscle glycogen utilization per 60 min was significantly greater in the heat ( - 74 m moles/kg-wet muscle) as compared to the cold exercise (- 42 m moles/kg-wet muscle). On the average, muscle triglyceride declined 23% during exercise in the cold and 11% in the heat. The findings of an enhanced glycolysis during exercise in the heat is compatible with earlier studies which demonstrate a decreased availability of oxygen due to a reduction in muscle blood flow.  相似文献   

13.
Plasma volume (PV) expansion by endurance training and/or heat acclimatization is known to increase aerobic and thermoregulatory capacities in humans. Also, higher erythrocyte volume (EV) fractions in blood are known to improve these capacities. We tested the hypothesis that training in a hypobaric hypoxic and warm environment would increase peak aerobic power (VO(2)(peak)) and forearm skin vascular conductance (FVC) response to increased esophageal temperature (T(es)) more than training in either environment alone, by increasing both PV and EV. Twenty men were divided into four training regimens (n = 5 each): low-altitude cool (610-m altitude, 20 degrees C ambient temperature, 50% relative humidity), high-altitude cool (2,000 m, 20 degrees C), low-altitude warm (610 m, 30 degrees C), and high-altitude warm (HW; 2,000 m, 30 degrees C). They exercised on a cycle ergometer at 60% VO(2)(peak) for 1 h/day for 10 days in a climate chamber. After training, PV increased in all trials, but EV increased in only high-altitude trials (both P < 0.05). VO(2)(peak) increased in all trials (P < 0.05) but without any significant differences among trials. FVC response to increased T(es) was measured during exercise at 60% of the pretraining VO(2)(peak) at 610 m and 30 degrees C. After the training, T(es) threshold for increasing FVC decreased in warm trials (P < 0.05) but not in cool trials and was significantly lower in HW than in cool trials (P < 0.05). The slope of FVC increase/T(es) increase increased in all trials (P < 0.05) except for high-altitude cool (P > 0.4) and was significantly higher in HW than in cool trials (P < 0.05). Thus, against our hypothesis, the VO(2)(peak) for HW did not increase more than in other trials. Moreover, slope of FVC increase/T(es) increase in HW increased most, despite the similar increase in blood volume, suggesting that factors other than blood volume were involved in the highest FVC response in HW.  相似文献   

14.
Exercise increases mean body temperature (T(body)) and cytokine concentrations in plasma. Cytokines facilitate PG production via cyclooxygenase (COX) enzymes, and PGE(2) can mediate fever. Therefore, we used a COX-2 inhibitor to test the hypothesis that PG-mediated pyrogenicity may contribute to the raised T(body) in exercising humans. In a double-blind, cross-over design, 10 males [age: 23 yr (SD 5), Vo(2 max): 53 ml x kg(-1) x min(-1) (SD 5)] consumed rofecoxib (50 mg/day; NSAID) or placebo (PLAC) for 6 days, 2 wk apart. Exercising thermoregulation was measured on day 6 during 45-min running ( approximately 75% Vo(2 max)) followed by 45-min cycling and 60-min seated recovery (28 degrees C, 50% relative humidity). Plasma cytokine (TNF-alpha, IL-10) concentrations were measured at rest and 30-min recovery. T(body) was similar at rest in PLAC (35.59 degrees C) and NSAID (35.53 degrees C) and increased similarly during running, but became 0.33 degrees C (SD 0.26) lower in NSAID during cycling (37.39 degrees C vs. 37.07 degrees C; P = 0.03), and remained lower throughout recovery. Sweating was initiated at T(body) of approximately 35.6 degrees C in both conditions but ceased at higher T(body) in PLAC than NSAID during recovery [36.66 degrees C (SD 0.36) vs. 36.39 degrees C (SD 0.27); P = 0.03]. Cardiac frequency averaged 6 x min(-1) higher in PLAC (P < 0.01), whereas exercising metabolic rate was similar (505 vs. 507 W x m(-2); P = 0.56). A modest increase in both cytokines across exercise was similar between conditions. COX-2 specific NSAID lowered exercising heat and cardiovascular strain and the sweating (offset) threshold, independently of heat production, indicating that PGE-mediated inflammatory processes may contribute to exercising heat strain during endurance exercise in humans.  相似文献   

15.
For many years, it was believed that ventilation does not limit performance in healthy humans. Recently, however, it has been shown that inspiratory muscles can become fatigued during intense endurance exercise and decrease their exercise performance. Therefore, it is not surprising that respiratory endurance training can prolong intense constant-intensity cycling exercise. To investigate the effects of respiratory endurance training on blood lactate concentration and oxygen consumption (VO2) during exercise and their relationship to performance, 20 healthy, active subjects underwent 30 min of voluntary, isocapnic hyperpnoea 5 days a week, for 4 weeks. Respiratory endurance tests, as well as incremental and constant-intensity exercise tests on a cycle ergometer, were performed before and after the 4-week period. Respiratory endurance increased from 4.6 (SD 2.5) to 29.1 (SD 4.0) min (P < 0.001) and cycling endurance time was prolonged from 20.9 (SD 5.5) to 26.6 (SD 11.8) min (P < 0.01) after respiratory training. The VO2 did not change at any exercise intensity whereas blood lactate concentration was lower at the end of the incremental [10.4 (SD 2.1) vs 8.8 (SD 1.9) mmol x l(-1), P < 0.001] as well as at the end of the endurance exercise [10.4 (SD 3.6) vs 9.6 (SD 2.7) mmol x l(-1), P < 0.01] test after respiratory training. We speculate that the reduction in blood lactate concentration was most likely caused by an improved lactate uptake by the trained respiratory muscles. However, reduced exercise blood lactate concentrations per se are unlikely to explain the improved cycling performance after respiratory endurance training.  相似文献   

16.
Physiological studies of long-term cardiovascular adaptation to exercise require training regimens that give robust conditioning effects and adequate testing procedures to quantify the outcome. We developed a valid and reproducible protocol for measuring maximal oxygen uptake (VO(2 max)), which was reached at a 25 degrees inclination with a respiratory exchange ratio > 1.05 and blood lactate > 6 mmol/l. The effect of intensity-controlled aerobic endurance training was studied in adult female and male rats that ran 2 h/day, 5 days/wk, in intervals of 8 min at 85-90% of VO(2 max) and 2 min at 50-60% of VO(2 max), with adjustment of exercise level according to VO(2 max) every week. After 7 wk, the increase in VO(2 max) plateaued at 60-70% above sedentary controls. Ventricular weights and myocyte length were up 25-30% and 6-12%, respectively. Work economy, oxygen pulse, and heart rate were sufficiently changed to indicate substantial cardiovascular adaptation. The model mimics important human responses to training and could be used in future studies on cellular, molecular, and integrative mechanisms of improved cardiovascular function.  相似文献   

17.
The effect of 60 min of exercise at two intensities (50 and 60% VO2max) and temperatures (0 and 22 degrees C) on changes (delta) in plasma lipids [triglycerides (TG), glycerol (GLY), total cholesterol (TC), and HDL-cholesterol (HDL-C)] was examined. Subjects were 10 men aged 27 +/- 7 years (VO2max = 3.81 +/- 0.45 1 min, % fat = 12.2% +/- 7.1%). VO2 and respiratory exchange ratio results indicated that total energy and fat energy use were similar at the two temperatures. Changes in plasma volume (%delta PV) were different (P less than 0.05) at the two temperatures (22 degrees C: -2.3% vs 0 degrees C: 1.1%). Combining the data at each temperature revealed that the increases in concentrations were greater (P less than 0.05) at 22 degrees C (delta TG = 0.22, delta GLY = 0.20, delta TC = 0.14, delta HDL-C = 0.05 mmol l-1) vs 0 degrees C (delta TG = 0.10, delta GLY = 0.12, delta TC = 0.05, delta HDL-C = 0.02 mmol l-1). Combining the data for each intensity revealed that the increases in concentration were greater (P less than 0.05) at 60% VO2max for delta TG and delta HDL-C. The 60% VO2max/22 degrees C bout produced greater changes (P less than 0.05) than all other bouts for delta TC and delta HDL-C (0.21 and 0.08 mmol l-1, respectively). Only delta TG and delta GLY were greater at 22 degrees C when adjusted for %delta PV. These metabolic and plasma lipid results indicate that cold exposure does not act synergistically with exercise to further stimulate fat metabolism.  相似文献   

18.
Seven male subjects exercised for 1, 3, 10 and 20 min on a cycle ergometer at 20, 60 and 80% VO2max, and then held to fatigue a sustained contraction of the quadriceps at 40% maximal voluntary contraction in order to determine what influence various levels of dynamic exercise would have on isometric function of the same group of muscles. Muscle temperature was measured before and within 15 s of the completion of the cycling to determine whether changes in muscle temperature might influence the subsequent isometric performance. Isometric endurance was shorter as the severity of the cycling increased beyond 20% VO2max, and as the duration of cycling increased up to 10 min. There were discrete linear relationships between muscle temperature and isometric endurance associated with cycling at 60% and 80% VO2max. There was a direct inverse relationship between quadriceps strength after cycling and muscle temperature, yet a significant reduction in strength occurred only after cycling at 80% VO2max. These results suggest that the encroachment on endurance and strength are controlled by different mechanisms. The heart rates during the isometric contractions were dependent on the preceding rhythmic exercise and decreased after exercise at 60 or 80% VO2max. In contrast, the blood pressure always increased during the isometric contractions, reaching similar values at the point of fatigue, regardless of the severity of the previous rhythmic exercise. These data provide additional evidence that separate mechanisms control changes in heart rate and blood pressure.  相似文献   

19.
The aim of this study was to examine the effects of Eleutherococcus senticosus (ES) supplementation on endurance capacity, cardiovascular functions and metabolism of recreationally trained males for 8 weeks. Nine recreationally trained males in college consumed 800 mg/d of ES or starch placebo (P) for 8 weeks according to a double-blind, randomized, placebo controlled and crossover design with a washout period of 4 weeks between the cycling trials. Subjects cycled at 75% VO2 peak until exhaustion. The examined physiological variables included endurance time, maximal heart rate during exhaustion exercise, VO2, rating of perceived exertion and respiratory exchange ratio. The biochemical variables including the plasma free fatty acid (FFA) and glucose were measured at rest, 15 min, 30 min and exhaustion. The major finding of this study was the VO2 peak of the subjects elevated 12% (P < 0.05), endurance time improved 23% (P < 0.05) and the highest heart rate increased 4% (P < 0.05) significantly. The second finding was at 30 min of 75% VO2 peak cycling, the production of plasma FFA was increased and the glucose level was decreased both significantly (P < 0.05) over 8-week ES supplementation. This is the first well-conducted study that shows that 8-week ES supplementation enhances endurance capacity, elevates cardiovascular functions and alters the metabolism for sparing glycogen in recreationally trained males.  相似文献   

20.
Bed rest (BR) deconditioning causes excessive increase of exercise core body tempera-ture, while aerobic training improves exercise thermoregulation. The study was designed to determine whether 3 days of 6 degrees head-down bed rest (HDBR) affects body temperature and sweating dynamics during exercise and, if so, whether endurance training before HDBR modifies these responses. Twelve healthy men (20.7+/-0.9 yrs, VO2max: 46+/-4 ml x kg(-1) x min(-1) ) underwent HDBR twice: before and after 6 weeks of endurance training. Before and after HDBR, the subjects performed 45 min sitting cycle exercise at the same workload equal to 60% of VO2max determined before training. During exercise the VO2, HR, tympanic (Ttymp) and skin (Tsk) temperatures were recorded; sweating dynamics was assayed from a ventilated capsule on chest. Training increased VO2max by 12.1% (p<0.001). Resting Ttymp increased only after first HDBR (by 0.22 +/- 0.08 degrees C, p<0.05), while exercise equilibrium levels of Ttymp were increased (p<0.05) by 0.21 +/- 0.07 and 0.26 +/- 0.08 degrees C after first and second HDBR, respectively. Exercise mean Tsk tended to be lower after both HDBR periods. Total sweat loss and time-course of sweating responses were similar in all exercise tests. The sweating threshold related to Ttymp was elevated (p<0.05) only after first HDBR. In conclusion: six-week training regimen prevents HDBR-induced elevation of core temperature (Ttymp) at rest but not during ex-ercise. The post-HDBR increases of Ttymp without changes in sweating rate and the tendency for lower Tsk suggest an early (<3d) influence of BR on skin blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号