首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.  相似文献   

3.
Human cytochrome P450 3A4 forms a series of minor testosterone hydroxylation products in addition to 6 beta-hydroxytestosterone, the major product. One of these, formed at the next highest rate after the 6 beta- and 2 beta-hydroxy products, was identified as 1 beta-hydroxytestosterone. This product was characterized from a mixture of testosterone oxidation products using an HPLC-solid phase extraction-cryoprobe NMR/time-of-flight mass spectrometry system, with an estimated total of approximately 6 microg of this product. Mass spectrometry established the formula as C(19)H(29)O(3) (MH(+) 305.2080). The 1-position of the added hydroxyl group was established by correlated spectroscopy and heteronuclear spin quantum correlation experiments, and the beta-stereochemistry of the added hydroxyl group was assigned with a nuclear Overhauser correlated spectroscopy experiment (1 alpha-H). Of several human P450s examined, only P450 3A4 formed this product. The product was also formed in human liver microsomes.  相似文献   

4.
5.
The one-electron autoxidation of human cytochrome P450 3A4   总被引:1,自引:0,他引:1  
Monomeric cytochrome P450 3A4 (CYP3A4), the most prevalent cytochrome P450 in human liver, can simultaneously bind one, two, or three molecules of substrates and effectors. The difference in the functional properties of such binding intermediates gives rise to homotropic and heterotropic cooperative kinetics of this enzyme. To understand the overall kinetic processes operating in CYP3A4, we documented the kinetics of autoxidation of the oxy-ferrous intermediate of CYP3A4 as a function of testosterone concentration. The rate of autoxidation in the presence of testosterone was significantly lower than that observed with no substrate present. Stability of the oxy-ferrous complex in CYP3A4 and the amplitude of the geminate CO rebinding increased significantly as a result of binding of just one testosterone molecule. In contrast, the slow phase in the kinetics of cyanide binding to the ferric CYP3A4 correlated with a shift of the heme iron spin state, which is only caused by the association of a second molecule of testosterone. Our results show that the first substrate binding event prevents the escape of diatomic ligands from the distal heme binding pocket, stabilizes the oxy-ferrous complex, and thus serves as an important modulator of the uncoupling channel in the cytochromes P450.  相似文献   

6.
Cytochrome P450 3A4 (CYP3A4) catalyzes the initial step in the clearance of many pharmaceuticals and foreign chemicals. The structurally diverse nature of CYP3A4 substrates complicates rational prediction of their metabolism and identification of potential drug interactions. The first molecular structures of human CYP3A4 were recently determined, revealing an active site of sufficient size and topography to accommodate either large ligands or multiple smaller ligands, as suggested by the heterotropic and homotropic cooperativity of the enzyme.  相似文献   

7.
Cytochrome P450 enzymes (P450s or CYPs) are good candidates for biocatalysis in the production of fine chemicals, including pharmaceuticals. Despite the potential use of mammalian P450s in various fields of biotechnology, these enzymes are not suitable as biocatalysts due to their low stability, low catalytic activity, and limited availability. Recently, wild-type and mutant forms of bacterial P450 BM3 (CYP102A1) from Bacillus megaterium have been found to metabolize various. It has therefore been suggested that CYP102A1 may be used to generate the metabolites of drugs and drug candidates. In this report, we show that the oxidation reactions of typical human CYP1A2 substrates (phenacetin, ethoxyresorufin, and methoxyresorufin) are catalyzed by both wild-type and mutant forms of CYP102A1. In the case of phenacetin, CYP102A1 enzymes show only O-deethylation product, even though two major products are produced as a result of O-deethylation and 3-hydroxylation reactions by human CYP1A2. Formation of the metabolites was confirmed by HPLC analysis and LC–MS to compare the metabolites with the actual biological metabolites produced by human CYP1A2. The results demonstrate that CYP102A1 mutants can be used for cost-effective and scalable production of human CYP1A2 drug metabolites. Our computational findings suggest that a conformational change in the cavity size of the active sites of the mutants is dependent on activity change. The modeling results further suggest that the activity change results from the movement of several specific residues in the active sites of the mutants.  相似文献   

8.
CYP3A4 and pregnane X receptor humanized mice   总被引:2,自引:0,他引:2  
Marked species differences exist in P450 expression and activities. In order to produce mouse models that can be used to more accurately predict human drug and carcinogen metabolism, P450- and xenobiotic receptor humanized mice are being prepared using bacterial artificial chromosomes (BAC) and P1 phage artificial chromosomes (PAC) genomic clones. In some cases, transgenic mice carrying the human genes are bred with null-mice to produce fully humanized mice. Mice expressing human CYP1A1, CYP1A2, CYP2E1, CYP2D6, CYP3A4, and CYP3A7 were generated and characterized. Studies with the CYP3A4-humanized (hCYP3A4) mouse line revealed new information on the physiological function of this P450 and its role in drug metabolism in vivo. With this mouse line, CYP3A4, under certain circumstances, was found to alter the serum levels of estrogen resulting in deficient lactation and low pup survival as a result of underdeveloped mammary glands. This hCYP3A4 mouse established the importance of intestinal CYP3A4 in the pharmacokinetics of orally administered drugs. The hCYP3A4 mice were also used to establish the mechanisms of potential gender differences in CYP3A4 expression (adult female > adult male) that could account for human gender differences in drug metabolism and response. The pregnane X receptor (PXR) is also involved in induction of drug metabolism through its target genes including CYP3A4. Since species differences exist in ligand specificity between human and mice, a PXR-humanized mouse (hPXR) was produced that responds to human PXR activators such as rifampicin but does not respond to the rodent activator pregnenalone 16alpha-carbonitrile.  相似文献   

9.
Human liver P450 NF25 (CYP3A4) had been previously expressed in Saccharomyces cerevisiae using the inducible GAL10-CYC1 promoter and the phosphoglycerate kinase gene terminator [Renaud, J. P., Cullin, C., Pompon, D., Beaune, P. and Mansuy, D. (1990) Eur. J. Biochem. 194, 889-896]. The use of an improved expression vector [Urban, P., Cullin, C. and Pompon, D. (1990) Biochimie 72, 463-472] increased the amounts of P450 NF25 produced/culture medium by a factor of five, yielding up to 10 nmol/l. The availability of recently developed host cells that simultaneously overexpress yeast NADPH-P450 reductase and/or express human liver cytochrome b5, obtained through stable integration of the corresponding coding sequences into the yeast genome, led to biotechnological systems with much higher activities of yeast-expressed P450 NF25 and with much better ability to form P450 NF25-iron-metabolite complexes. 9-fold, 8-fold, and 30-fold rate increases were found respectively for nifedipine 1,4-oxidation, lidocaine N-deethylation and testosterone 6 beta-hydroxylation between P450 NF25-containing yeast microsomes from the basic strain and from the strain that both overexpresses yeast NADPH-P450 reductase and expresses human cytochrome b5. Even higher turnovers (15-fold, 20-fold and 50-fold rate increases) were obtained using P450 NF25-containing microsomes from the yeast just overexpressing yeast NADPH-P450 reductase in the presence of externally added, purified rabbit liver cytochrome b5. This is explained by the fact that the latter strain contained the highest level of NADPH-P450 reductase activity. It is noteworthy that for the three tested substrates, the presence of human or rabbit cytochrome b5 always showed a stimulating effect on the catalytic activities and this effect was saturable. Indeed, addition of rabbit cytochrome b5 to microsomes from a strain expressing human cytochrome b5 did not further enhance the catalytic rates. The yeast expression system was also used to study the formation of a P450-NF25-iron-metabolite complex. A P450 Fe(II)-(RNO) complex was obtained upon oxidation of N-hydroxyamphetamine, catalyzed by P450-NF25-containing yeast microsomes. In microsomes from the basic strain expressing P450 NF25, 10% of the starting P450 NF25 was transformed into this metabolite complex, whereas more than 80% of the starting P450 NF25 led to complex formation in microsomes from the strain overexpressing yeast NADPH-P450 reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Mechanism-based inactivation of human liver P450 3A4 by L-754,394, a Merck compound synthesized as a potential HIV protease inhibitor, was investigated using recombinant P450 3A4. Enzyme inactivation was characterized by a small partition ratio (3.4 or 4.3 +/- 0.4), i.e., the total number of metabolic events undergone by the inhibitor divided by the number of enzyme inactivating events, lack of reversibility upon extensive dialysis, no decrease in the characteristic 450-nm species relative to control, and covalent modification of the apoprotein. The major and minor products formed during the inactivation of P450 3A4 were the monohydroxylated and the dihydrodiol metabolites of L-754,394, respectively. L-754,394 that had been adducted to P450 3A4 was hydrolyzed under the conditions used for SDS-PAGE, Ni(2+) affinity chromatography, and proteolytic digestion. In addition, the modification was not stable to the acidic conditions of HPLC separation and CNBr digestion. The labile nature of the peptide adduct and the nonstoichiometric binding of the inactivating species to P450 3A4 precluded the direct identification of a covalently modified amino acid residue or the peptide to which it was attached. However, Tricine SDS-PAGE in combination with MALDI-TOF-MS and homology modeling, allowed I257-M317 to be tentatively identified as an active site peptide, while prior knowledge of the stability of N-, O-, and S-linked conjugates of activated furans implicates Glu307 as the active site amino acid that is labeled by L-754, 394.  相似文献   

11.
12.
seco-Derivatives of the anticancer agent pancratistatin bearing the 2S,3S,4S,5S configuration were accessed via a novel, highly diastereoselective anti-aldol reaction. Structure–activity relationships reveal important insights into the seco-pancratistatin pharmacophore as a potent and selective inhibitor of human cytochrome P450 3A4 (CYP3A4), and highlight features of concern in advancing a potent, selective anticancer agent in the pancratistatin series.  相似文献   

13.
Cytochrome P450 (P450) 3A4, the major catalyst involved in human drug oxidation, displays substrate- and reaction-dependent homotropic and heterotropic cooperative behavior. Although several models have been proposed, these mainly rely on steady-state kinetics and do not provide information on the contribution of the individual steps of P450 catalytic cycle to the observed cooperativity. In this work, we focused on the kinetics of substrate binding, and the fluorescent properties of bromocriptine and alpha-naphthoflavone allowed analysis of an initial ligand-P450 3A4 interaction that does not cause a perturbation of the heme spectrum. The binding stoichiometry for bromocriptine was determined to be unity using isothermal titration calorimetry and equilibrium dialysis methods, suggesting that the ligand bound to the peripheral site during the initial encounter dissociates subsequently. A three-step substrate binding model is proposed, based on absorbance and fluorescence stopped-flow kinetic data and equilibrium binding data obtained with bromocriptine, and evaluated using kinetic modeling. The results are consistent with the substrate molecule binding at a site peripheral to the active site and subsequently moving toward the active site to bind to the heme and resulting in a low to high spin iron shift. The last step is attributed to a conformational change in the enzyme active site. The later steps of binding were shown to have rate constants comparable with the subsequent steps of the catalytic cycle. The P450 3A4 binding process is more complex than a two-state system, and the overlap of rates of some of the events with subsequent steps is proposed to underlie the observed cooperativity.  相似文献   

14.
Phosphorylation of cytochrome P450: regulation by cytochrome b5   总被引:1,自引:0,他引:1  
Rabbit liver cytochrome P450 LM2 and several forms of rat liver cytochrome P450 are phosphorylated by cAMP-dependent protein kinase (PKA) and by protein kinase C. Under aqueous assay conditions at neutral pH LM2 is phosphorylated only to a maximum extent of about 20 mol% by PKA. We show that detergents or alkaline pH greatly enhance the extent of phosphorylation of the cytochrome P450 substrates of cAMP-dependent protein kinase. In the presence of 0.05% Emulgen, PBRLM5, which appears to be the best cytochrome P450 substrate for cAMP-dependent protein kinase, incorporates phosphate up to about 84 mol% of enzyme. We reported previously (I. Jansson et al. (1987) Arch. Biochem. Biophys. 259, 441-448) that cytochrome b5 inhibits the phosphorylation of LM2 by cAMP-dependent protein kinase. In this paper, using PBRLM5, we demonstrate, by analysis of initial rates, that the inhibition of phosphorylation by cytochrome b5 is competitive, with a Ki = 0.48 microM. We also show that a number of forms of cytochrome P450 can be phosphorylated by protein kinase C, and that the phosphorylation of these forms by protein kinase C is also inhibited by cytochrome b5. These data suggest that the phosphorylation site(s) of cytochromes P450 may be located within or overlap the cytochrome b5 binding domain of the enzymes.  相似文献   

15.
16.
We have incorporated CYP3A4 (cytochrome P450 3A4) and CPR (NADPH-cytochrome P450 reductase) into liposomes with a high lipid/protein ratio by an improved method. In the purified proteoliposomes, CYP3A4 binds testosterone with Kd (app)=36±6 μM and Hill coefficient=1.5±0.3, and 75±4% of the CYP3A4 can be reduced by NADPH in the presence of testosterone. Transfer of the first electron from CPR to CYP3A4 was measured by stopped-flow, trapping the reduced CYP3A4 as its Fe(II)-CO complex and measuring the characteristic absorbance change. Rapid electron transfer is observed in the presence of testosterone, with the fast phase, representing 90% of the total absorbance change, having a rate of 14±2 s(-1). Measurements of the first electron transfer were performed at various molar ratios of CPR/CYP3A4 in proteoliposomes; the rate was unaffected, consistent with a model in which first electron transfer takes place within a relatively stable CPR-CYP3A4 complex. Steady-state rates of NADPH oxidation and of 6β-hydroxytestosterone formation were also measured as a function of the molar ratio of CPR/CYP3A4 in the proteoliposomes. These rates increased with increasing CPR/CYP3A4 ratio, showing a hyperbolic dependency indicating a Kd (app) of ~0.4 μM. This suggests that the CPR-CYP3A4 complex can dissociate and reform between the first and second electron transfers.  相似文献   

17.
Induction of P450 3A1 and P450 3A2 was studied in adult rat liver following treatment with a single high dose of dexamethasone (DEX). The increase of both P450 3A1 and 3A2 occurred at the level of mRNA as well as protein. P450 3A isozymes thus induced were catalytically active. No constitutive expression of P450 3A1 mRNA or protein was observed in males or females. Constitutive expression of P450 3A2 mRNA and protein was observed in males but not in females. Additionally, in females, P450 3A2 was almost nondetectable compared to that in males, at any dose of DEX. A time course study following DEX treatment showed that P450 3A1 mRNA and protein were detectable in both sexes at 12 hours, increased until 48 hours, and then declined. The decline was more rapid in males. P450 3A2 mRNA and protein increased as early as 3 hours, increased further up to 48 hours, and slowly declined thereafter. A dose-response study indicated that P450 3A1 mRNA and protein progressively increased in both sexes from a dose of 30 mg/kg. In contrast, P450 3A2 mRNA and protein in males did not increase up to a dose of 30 mg/kg but increased at higher doses. Total P450 content and P450 3A catalytic activity were also found to increase with time and dose. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Sphingolipids modulate many aspects of cell function, including the expression of cytochrome P450, a superfamily of heme proteins that participate in the oxidation of a wide range of compounds of both endogenous (steroid hormones and other lipids) and exogenous (e.g. alcohol, drugs and environmental pollutants) origin. Cytochrome P450-2C11 (CYP 2C11) is down-regulated in response to interleukin-1beta (IL-1beta), and this response involves the hydrolysis of sphingomyelin to ceramide as well as ceramide to sphingosine, and phosphorylation of sphingosine to sphingosine 1-phosphate. Activation of ceramidase(s) are a key determinant of which bioactive sphingolipid metabolites are formed in response to IL-1beta. Ceramidase activation also appears to account for the loss of expression of CYP 2C11 when hepatocytes are placed in cell culture, and the restoration of expression when they are plated on Matrigel; hence, this pathway is influenced by, and may mediate, interactions between hepatocytes and the extracellular matrix. Recent studies using inhibitors of sphingolipid metabolism have discovered that sphingolipids are also required for the induction of CYP1A1 by 3-methylcholanthrene, however, in this case, the requirement is for de novo sphingolipid biosynthesis rather than the turnover of complex sphingolipids. These findings illustrate how changes in sphingolipid metabolism can influence the regulation of at least several isoforms of cytochrome P450.  相似文献   

19.
Although CYP3A induction by dexamethasone has been extensively documented, its mechanism is still unclear because both the role of the glucocorticoid receptor and the ability of dexamethasone to activate the human pregnane X receptor have been questioned. In an attempt to resolve this problem, we investigated the response of CYP3A4 to dexamethasone (10 nm-100 microm) in primary human hepatocytes and HepG2 cells, using a variety of methods: kinetic analysis of CYP3A4 and tyrosine aminotransferase expression, effects of RU486 and cycloheximide, ligand binding assay, cotransfection of HepG2 cells with CYP3A4 reporter gene constructs and vectors expressing the glucocorticoid receptor, pregnane X receptor or constitutively activated receptor. In contrast to rifampicin (monophasic induction), dexamethasone produces a biphasic induction of CYP3A4 mRNA consisting of a low-dexamethasone component (nmol concentrations) of low amplitude (factor of 3-4) followed by a high-dexamethasone component (supramicromolar concentrations) of high amplitude (factor of 15-30). We show that the low-dexamethasone component results from the glucocorticoid receptor-mediated expression of pregnane X receptor and/or constitutively activated receptor which, in turn, are able to transactivate CYP3A4 in a xenobiotic-independent manner. At supramicromolar concentrations (>10 microm), dexamethasone binds to and activates pregnane X receptor thus producing the high-dexamethasone component of CYP3A4 induction. We conclude that, in contrast to the other xenobiotic inducers of CYP3A4, glucocorticoids play a dual role in CYP3A4 expression, first by controlling the expression of PXR and CAR under physiological conditions (submicromolar concentrations) through the classical glucocorticoid receptor pathway, and second by activating the pregnane X receptor under bolus or stress conditions (supramicromolar concentrations).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号