首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three previously described electrophoretic phenotypes of mitochondrial glutamate oxaloacetate transaminase (GOTM) in horse leukocytes are shown to be controlled by two codominant alleles at a single autosomal locus. The GOTM locus is linked to the serum esterase locus (Es), as no recombination between these loci was observed among 16 informative offspring in one sire family. The results assign GOTM to equine linkage group (LG) II. The hypothesis that a part of LG II (e-Es) shares homologies with mouse chromosome 8 is thus confirmed, as the murine homologue of GOTM is located within the cluster of esterase loci on chromosome 8. The assumed homology also involves rabbit LG VI, rat LG V, and human chromosome 16. The observation is a striking example of the conservation of linkage relationships between mammalian species.  相似文献   

2.
A large conserved linkage group exists on mouse chromosome 8 and human chromosome 16q, including the loci for chymotrypsinogen B (Ctrb), haptoglobin (Hp), lecithin:cholesterol acyltransferase (Lcat), metallothionein-1,-2 (Mt-1,-2), tyrosine aminotransferase (Tat), and uvomorulin (Um). Using cloned gene probes, these six loci were mapped in M. m. domesticus X M. spretus interspecific crosses relative to a number of chromosome 8 anchor loci resulting in the gene order Es-1,Es-9-Mt-1,-2-Got-2-Es-2,Es-7,Lcat,Um-Hp,Tat,Ctrb-e. These results complement earlier studies and redefine the conserved segment on mouse chromosome 8, previously defined by the Hp-Tat interval, by the 24-cM interval between Mt-1,-2 and the conserved locus for adenine phosphoribosyltransferase, Aprt, mapped at 25 cM from Es-1 by T. B. Nesterova, P. M. Borodin, S. M. Zakian, and O. L. Serov (1987, Biochem. Genet. 25: 563-568). Within this segment, the gene order appears the same in man and mouse. While map distances between HP-TAT,HP-CTRB, and TAT-CTRB of respectively 7, 11, and 9 cM have previously been measured in man, no crossovers between Hp, Tat, and Ctrb were observed in over 100 meioses in the mouse.  相似文献   

3.
In a [(BN X TM) X TM] backcross progeny of rats, nine significant linkage associations were found among 105 pairwise combinations of 15 loci. After comparing this with other published data and data of personal communications, we considered that the d gene we tentatively designated may be identical to the gene for pink-eyed dilution (p), and that the associations of Gc-Hbb, RT1-h, and Gc-Fh were due to chance rather than real linkage. The linkages obtained in this study, therefore, were Hbb-p (26.5 +/- 5.5) in LG I, Mup-1-Acon-1 (12.5 +/- 4.1) in LG II, Hao-1-Svp-1 (23.8 +/- 6.6) in LG IV, Es-1-Es-3 (17.2 +/- 4.7) in LG V, h-Gc (10.9 +/- 3.3) in LG VI, and Fh-Pep-3 (32.3 +/- 5.9) in LG X.  相似文献   

4.
The amplified fragment length polymorphism (AFLP) technique is a DNA technology that generates the so-called AFLP markers. These markers are genomic restriction fragments detected after two rounds of polymerase chain reaction (PCR) without prior knowledge of nucleotide sequence. Here we describe the first application of the AFLP technique in the rabbit. We have tested two primer combinations. The results obtained with the DNA from rabbits of different breeds justify the conclusion that AFLP analysis is an effective tool for genetic studies in the rabbit. In addition, we contribute to the linkage map of the rabbit by localizing two AFLP markers on rabbit linkage group VI (LG VI). For this purpose the progeny of a IIIVO/JU x [IIIVO/JU x AX/JU]F(1) backcross were genotyped for 12 AFLP markers and 3 LG VI classical markers [one coat color marker (e) and two biochemical markers (Es-1 and Est-2)]. AX/JU is a dietary cholesterol-susceptible (hyperresponding) inbred strain and IIIVO/JU is a dietary cholesterol resistant (hyporesponding) inbred strain. Moreover, it is possible to evoke dietary cholesterol-induced aorta atherosclerosis in a relatively short time period in AX/JU rabbits, in contrast to IIIVO/JU rabbits. A significant cosegregation was found between basal serum HDL cholesterol level (i.e., the level on a low-cholesterol, control diet) and an AFLP marker on LG VI. It is concluded that one or more genes of LG VI are regulating the basal serum HDL cholesterol level in rabbits. Thus the present study with rabbits clearly illustrates the value of AFLP markers for the construction of linkage maps and mapping of quantitative trait loci (QTL).  相似文献   

5.
Cramer (1981) reported that Pg-1 (urinary pepsinogen) in the rat was loosely linked with albinism in the linkage group I. We performed a three point test on the loci of pg-1, c, and Hbb. We could reconfirm that pg-1 was autosomal trait with two co-dominant alleles of pg-1a and pg-1b. But in progeny of ((WF X IS) X WF) backcross, pg-1 was linked to neither c nor Hbb, while a close linkage between c and Hbb was detected. Also pg-1 was not linked to Mup-1 (LG II), a (LG IV), Es-3 (LG V), and h (LG VI). pg-1 will be one of the most valuable genetic markers of the rats, since pg-1 was highly polymorphic among inbred strains of rats, and not linked to LG I, II, IV, V, and VI.  相似文献   

6.
Examining the strain distribution pattern of the recombinant inbred strain series LXB and DXE and of backcross progeny of (LEW X LE)F1 X LEW, (LEW X BN)F1 X LEW, and (LEW X BN)F1 X BN for esterase markers, including three carboxylesterase allozymes (ES-15, ES-16, ES-18), hitherto not studied genetically, revealed the existence of two esterase gene clusters within LG V: cluster 1, containing Es-2, Es-8, Es-10, Es-3, Es-7, Es-9, and separated by 8.8 +/- 1.3 cM from cluster 2, containing Es-1, Es-14 (formerly Es-Si), Es-15, Es-16, and Es-18. Analyses of 93 inbred strains of rats showed only 12 and 6 haplotypes for cluster 1 and cluster 2, respectively, indicating a strong linkage disequilibrium. These data and serotyping results of one backcross population for the RT2 blood group system lead to a re-evaluation of linkage group V. Including literature data the following gene order is suggested: RT2 - (7.1 +/- 1.8) Es-2, Es-4, Es-8, Es-10 (2.7 +/- 0.7) Es-3, Es-7, Es-9 (8.8 +/- 1.3) Es-1, Es-14, Es-15, Es-16, Es-18.  相似文献   

7.
There are three different linear orders of esterase loci of linkage group V (LGV) in the rat (Rattus norvegicus). The first is Es-2-Es-3-Es-1, the second Es-3-(Es-2,Es-4)-Es-1, and the third Es-3-Es-2-Es-1-Es-4. We carried out mating experiments to define the order clearly. Linkage analyses of the four esterase loci, Es-1, Es-2, Es-3, and Es-4, were carried out using two inbred strains carrying different alleles at the four loci. Six locus combinations examined in this study were as follows: Es-1-Es-2, Es-1-Es-3, Es-1-Es-4, Es-2-Es-3, Es-2-Es-4, and Es-3-Es-4. The recombination frequencies of each combination were 6.3, 6.3, 6.3, 5.2, 1.8, and 3.4%, respectively. The first recombination between Es-2 and Es-4 was observed. We propose that the esterase loci of LGV be classified into three clusters according to distances between the loci. The linear order of the four loci is shown to be as follows: [Es-3] (cluster II)-3.4 +/- 2.4%-[Es-4-1.8 +/- 1.7%-Es-2] (cluster III)-6.3 +/- 6.1%-[Es-1] (cluster I).  相似文献   

8.
Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of microsatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and that the chicken linkage map may not be suitable, in terms of genetic distances, as a model for all bird species.  相似文献   

9.
The Prt-2 locus is linked with Es-1 and Es-2 loci on chromosome 8 (linkage group XVIII). Recombination frequencies were 8.2% between Es-1 and Es-2, 12.7% between Es-1 and Prt-2, and 4.5% between Es-2 and Prt-2. From these data, the map position of Prt-2 has been estimated on chromosome 8. The Prt-1 and Prt-3 loci, which are linked very closely on the same chromosome, were not determined.  相似文献   

10.
E Schurr  E Skamene  K Morgan  M L Chu  P Gros 《Genomics》1990,8(3):477-486
We have investigated the degree of synteny between the long arm (q) of human chromosome 2 and the proximal portion of mouse chromosome 1. To define the limits of synteny, we have determined whether mouse homologs of seven human genes mapping to chromosome 2q cosegregated with anchor loci on mouse chromosome 1. The loci investigated were NEB/Neb, ELN/Eln, COL3A1/Col3a1, CRYG/Len-2, FN1/Fn-1, VIL/Vil, and COL6A3/Col6a3. Ren-1,2 and Acrg were included as two proximal mouse chromosome 1 anchor loci. The segregation of restriction fragment length polymorphisms at these loci was analyzed in the progeny of Mus spretus x C57BL/6J hybrids backcrossed to the C57BL/6J inbred strain. We found that five of the structural protein loci and the two anchor loci form a linkage group on proximal murine chromosome 1. The proposed gene order of this group of linked markers is centromere - Col3a1 - Len-2-Fn-1-Vil-Acrg-Col6a3-Ren1,2. Neb and Eln are linked neither to each other nor to any other marker on proximal mouse chromosome 1. Therefore, the mouse loci Col3a1 and Col6a3 are identified as flanking markers of the linkage group of structural protein loci. The estimated genetic map distances are Col3a1-13.3 cM-Len-2-3.4 cM-Fn-1-3.8 cM-Vil-9.6 cM-Acrg-2.1 cM-Col6a3-18.3 cM-Ren1,2. The available map information for human chromosome 2q markers and mouse chromosome 1 markers presented here tentatively identifies Col3a1 and Col6a3 as the border markers that define the limits of the syntenic chromosome segment. The order of mouse genes on chromosome 1 and their human homologs on chromosome 2q also appears to be conserved, suggesting that mapping of murine genes on the conserved segment may be useful to predict gene order in man.  相似文献   

11.
A multilocus linkage map of mouse chromosome 8   总被引:1,自引:0,他引:1  
We present a genetic linkage map of mouse chromosome 8 that spans 53 cM and includes eight cloned loci. This map was derived from analysis of 100 progeny of an interspecific backcross between Mus spretus and Mus musculus domesticus. Genes that were mapped in this analysis include L7, Plat, Lpl, Ucp, Es, Mt-1, Um, and Tat. This analysis positions a new extremely proximal marker on chromosome 8, which is discussed as a potential candidate gene for the nervous locus. These linkage data will be useful for the mapping of additional loci on chromosome 8.  相似文献   

12.
A genetic map of the Cf-9 to Dmd region of the mouse X chromosome has been established by typing 100 offspring from a Mus musculus x Mus spretus interspecific backcross for the four loci Cf-9, Cdr, Gabra3, and Dmd. The following order and genetic distances in centimorgans were determined: (Cf-9)-2.4 +/- 1.7-(Cdr)-2.0 +/- 1.4-(Gabra3)-4.1 +/- 2.0-(Dmd). Six backcross offspring carrying X chromosomes with recombination events in the Cdr-Dmd region were identified. These recombination events were used to define the position of Fmr-1, the murine homologue of FMR1, which is the gene implicated in the fragile X syndrome in man, and that of DXS296h, the murine homologue of DXS296. Both Fmr-1 and DXS296h were mapped into the same recombination interval as Gabra3 on the mouse X chromosome. These findings provide strong support for the concept that the order of loci lying in the Cf-9 to Gabra3 segment of the X chromosome is highly conserved between human and mouse.  相似文献   

13.
Polymorphism of electrophoretic mobility of adenine phosphoribosyltransferase (APRT) was found in a population of domestic mice, Mus musculus bactrianus. The Aprt gene was mapped using two markers: plasma esterase 1 coded by the gene Es-1 situated at the distance of 26 morgans from the centromere, and a Robertsonian translocation Rb (8.17) 1 Iem which marks the centromere. The results of linkage analysis permitted to localize the gene Aprt at 51 morgans from the centromere, and 25 morgans distal from the gene Es-1 on the genetic map of chromosome 8. It is found that emotional stress does not alter the recombination rate at chromosome 8, when spermatocytes are at the pachytene stage.  相似文献   

14.
Twenty enzyme loci were mapped on the three linkage groups of Aedes triseriatus using intraspecific and interspecific matings. Large numbers of single-pair forced matings were made among field-collected A. triseriatus. Parents with appropriate isozyme linkage genotypes were identified and the progeny analyzed using standard electrophoretic procedures. Interspecific data were obtained by performing single-pair forced matings between A. triseriatus and either A. hendersoni or A. brelandi and then backcrossing to one of the parental species. Interspecific recombination values were adjusted to compensate for reduced chiasmata (and crossovers) in progeny of interspecific crosses. Four loci--Aat2, Me, Idh 1, and Mpi-- were associated with sex on linkage group (LG)I. The LG I map was about 24% longer than the predicted length of 62 map units. Eleven loci--Gpi, Hk4, Odh, Est2, Pgm, Sod1, Gpd, Had, Aco2, Idh2, and Est5--were assigned to LG II and spanned approximately 60 map units. Five loci--Mdh2, Pgd, Aat1, Gapd, and Fum--were assigned to LG III, but exact positions and distances of loci were not definitely established. The linkage relationships of enzyme loci of A. triseriatus were compared to maps of five other Aedes species in four subgenera. Map differences indicated several major inversions and translocations that separated the subgenera. In addition, several linkage groups appeared to have been conserved during Aedes subgeneric divergence.  相似文献   

15.
Bond DJ 《Genetics》1979,92(1):75-82
A chromosome rearrangement has been isolated and characterized in Sordaria brevicollis. Crosses to spore color mutants on each of the seven linkage groups have enabled the breakpoints to be mapped. The simplest hypothesis to account for the results is that a piece of linkage group VI has been translocated to linkage group V and inserted 2.7 map units from its centromere. Previous reports of markers on this linkage group with centromere distances greater than 2.7 units make it unlikely that the translocation is quasiterminal.  相似文献   

16.
Microdissection and microcloning have been utilized in order to create a bank of clones from the proximal region of mouse chromosome 7. Several important loci map to this area, including the albino locus (c), pink-eye dilution (p), and the developmental mutant, pudgy (pu). By use of interspecific crosses between Mus musculus domesticus and Mus spretus, we have generated backcross progeny segregating for the mutations chinchilla (cch) and pink-eye dilution (p). Exploiting the evolutionary divergence between the two species, we have analyzed the inheritance of restriction fragment length variants of three microclones and their linkage to the two markers cch and p, respectively. All three clones studied map to the dissected region, and as such also show genetic linkage to the pudgy locus. This bank of chromosome 7-derived microclones should provide molecular start points for the isolation of a variety of developmental loci of unknown gene product, including the pudgy locus.  相似文献   

17.
A new esterase locus (Es-13) has been identified in Mus musculus. Strains AEJ/GnRk, LG/J, SJL/J, and SWR/J carry a recessive allele, Es-13 b, for a locus possibly involved in the posttranslational modification of a kidney esterase. All other strains observed carried the dominant Es-13 a allele. Es-13 was mapped on Chr 9 by recombinant inbred lines and by conventional backcrossing experiments. Backcross data produced the following gene order and map distances: Lap-1 (31.6±7.5 cM) Es-13 (2.6±2.6 cM) Mod-1.  相似文献   

18.
The murine retinoblastoma homolog maps to chromosome 14 near Es-10   总被引:3,自引:0,他引:3  
Restriction fragment length variants have been exploited to map genetically Rb-1, the murine homolog of the human retinoblastoma gene. Rb-1 localized to mouse chromosome 14 on the basis of results from analysis of somatic cell hybrids. In an interspecific backcross involving Mus spretus, Rb-1 and the murine homolog of the human esterase D gene (ESD), which we refer to here as Esd, were inseparable. Furthermore, the strain distribution patterns of Rb-1 and Es-10 are the same in 31 of 32 recombinant inbred strains. Close linkage of the chromosome 14 morphological marker hairless (hr) to Rb-1 is also implied. These results localize Rb-1 on the mouse linkage map and provide close genetic markers to follow Rb-1 in somatic as well as in germline genetic experiments. Additionally, the results suggest that Es-10 is the murine homolog of ESD and provide further evidence for linkage conservation during mammalian evolution.  相似文献   

19.
To add detail to the genetic map of Arabidopsis lyrata, and compare it with that of A. thaliana, we have developed many additional markers in the A. lyrata linkage groups, LG1 and LG2, corresponding to A. thaliana chromosome 1. We used a newly developed method for marker development for single nucleotide polymorphisms present in gene sequences, plus length differences, to map genes in an A. lyrata family, including variants in several genes close to the A. thaliana centromere 1, providing the first data on the location of an A. lyrata centromere; we discuss the implications for the evolution of chromosome 1 of A. thaliana. With our larger marker density, large rearrangements between the two Arabidopsis species are excluded, except for a large inversion on LG2. This was previously known in Capsella; its presence in A. lyrata suggests that, like most other rearrangements, it probably arose in the A. thaliana lineage. Knowing that marker orders are similar, we can now compare homologous, non-rearranged map distances to test the prediction of more frequent crossing-over in the more inbreeding species. Our results support the previous conclusion of similar distances in the two species for A. lyrata LG1 markers. For LG2 markers, the distances were consistently, but non-significantly, larger in A. lyrata. Given the two species' large DNA content difference, the similarity of map lengths, particularly for LG1, suggests that crossing-over is more frequent across comparable physical distances in the inbreeder, A. thaliana, as predicted.  相似文献   

20.
A new polymorphic pepsinogen locus (Pg-2) in the rat (Rattus norvegicus)   总被引:1,自引:0,他引:1  
Only two types of pepsinogens, which are products of the Pg-1 locus, are present in rat urine. In gastric mucosa, however, additional pepsinogen isozymes are expressed. We have found a polymorphism for rat gastric mucosa pepsinogen using agarose gel electrophoresis. Some inbred rat strains expressed a pepsinogen band, while others did not. The trait was found to be controlled by a single autosomal locus. We tentatively designated the locus as Pg-2 with two alleles, Pg-2a for the one controlling presence of the band and Pg-2o for the one controlling absence. Linkage analysis using BN and TM strains revealed that Pg-2 was closely linked to Pg-1 (3.7 +/- 1.8 cM), and that it did not belong to LG I (Hbb and p), LG II (Acon-1 and Mup-1), LG IV (Hao-1 and Svp-1), LG V (Es-1 and Es-3), LG VI (Gc and h), LG IX (RT1), LG X (Fh and Pep-3), nor a LG containing Ahd-2 (as yet undetermined).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号