首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paramyxovirus fusion proteins have a highly conserved leucine zipper motif immediately upstream from the transmembrane domain of the F1 subunit (R. Buckland and F. Wild, Nature [London] 338:547, 1989). To determine the role of the conserved leucines in the oligomeric structure and biological activity of the Newcastle disease virus (NDV) fusion protein, the heptadic leucines at amino acids 481, 488, and 495 were changed individually and in combination to an alanine residue. While single amino acid changes had little effect on fusion, substitution of two or three leucine residues abolished the fusogenic activity of the protein, although cell surface expression of the mutants was higher than that of the wild-type protein. Substitution of all three leucine residues with alanine did not alter the size of the fusion protein oligomer as determined by sedimentation in sucrose gradients. Furthermore, deletion of the C-terminal 91 amino acids, including the leucine zipper motif and transmembrane domain, resulted in secretion of an oligomeric polypeptide. These results indicate that the conserved leucines are not necessary for oligomer formation but are required for the fusogenic ability of the protein. When the polar face of the potential alpha helix was altered by nonconservative changes of serine to alanine (position 473), glutamic acid to lysine or alanine (position 482), asparagine to lysine (position 485), or aspartic acid to alanine (position 489), the fusogenic ability of the protein was not significantly disrupted. In addition, a double mutant (E482A,D489A) which removed negative charges along one side of the helix had negligible effects on fusion activity.  相似文献   

2.
S S Chen  C N Lee  W R Lee  K McIntosh    T H Lee 《Journal of virology》1993,67(6):3615-3619
The N-terminal region of the envelope (env) transmembrane protein of human immunodeficiency virus type 1 (HIV-1) has a leucine zipper-like motif. This highly conserved zipper motif, which consists of a heptad repeat of leucine or isoleucine residues, has been suggested to play a role in HIV-1 env glycoprotein oligomerization. This hypothesis was tested by replacing the highly conserved leucine or isoleucine residues in the zipper motif with a strong alpha-helix breaker, proline. We report here that such substitutions did not abolish the ability of env protein to form oligomers, indicating that this highly conserved zipper motif does not have a crucial role in env protein oligomerization. However, the mutant viruses all showed impaired infectivity, suggesting that this conserved zipper motif can have an important role in the virus life cycle.  相似文献   

3.
Oligomerization of the hydrophobic heptad repeat of gp41.   总被引:3,自引:9,他引:3       下载免费PDF全文
The transmembrane protein of human immunodeficiency virus type 1 (HIV-1) contains a leucine zipper-like (hydrophobic heptad) repeat which has been predicted to form an amphipathic alpha helix. To evaluate the potential of the hydrophobic heptad repeat to induce protein oligomerization, this region of gp41 has been cloned into the bacterial expression vector pRIT2T. The resulting plasmid, pRIT3, expresses a fusion protein consisting of the Fc binding domain of monomeric protein A, a bacterial protein, and amino acids 538 to 593 of HIV-1 gp41. Gel filtration chromatography demonstrated the presence of oligomeric forms of the fusion protein, and analytical centrifugation studies confirmed that the chimeric protein formed a higher-order multimer that was greater than a dimer. Thus, we have identified a region of HIV-1 gp41 which is capable of directing the oligomerization of a fusion protein containing monomeric protein A. Point mutations, previously shown to inhibit the biological activity of the HIV-1 envelope glycoprotein, have been engineered into the segment of gp41 contained in the fusion protein, and expressed mutant proteins were purified and analyzed via fast protein liquid chromatography. A point mutation in the heptad repeat, which changed the central isoleucine to an alanine, caused a significant (> 60%) decrease in oligomerization, whereas changing the central isoleucine to aspartate or proline resulted in almost a complete loss of oligomerization. Deletions of one, two, or three amino acids following the first isoleucine also resulted in a profound decrease in oligomerization. The inhibitory effects of the mutations on oligomer formation correlated with the effects of the same mutations on envelope glycoprotein-mediated fusion. A possible role of the leucine zipper-like region in the fusion process and in an oligomerization event distinct from assembly of the envelope glycoprotein complex is discussed.  相似文献   

4.
Long G  Pan X  Vlak JM 《Journal of virology》2008,82(5):2437-2447
The heptad repeat (HR), a conserved structural motif of class I viral fusion proteins, is responsible for the formation of a six-helix bundle structure during the envelope fusion process. The insect baculovirus F protein is a newly found budded virus envelope fusion protein which possesses common features to class I fusion proteins, such as proteolytic cleavage and the presence of an N-terminal open fusion peptide and multiple HR domains on the transmembrane subunit F(1). Similar to many vertebrate viral fusion proteins, a conserved leucine zipper motif is predicted in this HR region proximal to the fusion peptide in baculovirus F proteins. To facilitate our understanding of the functional role of this leucine zipper-like HR1 domain in baculovirus F protein synthesis, processing, and viral infectivity, key leucine residues (Leu209, Leu216, and Leu223) were replaced by alanine (A) or arginine (R), respectively. By using Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) as a pseudotype expression system, we demonstrated that all mutant F proteins incorporated into budded virus, indicating that leucine substitutions did not affect intercellular trafficking of F. Furin-like protease cleavage was not affected by any of the leucine substitutions; however, the disulfide bridging and N-linked glycosylation patterns were partly altered. Single substitutions in HR1 showed that the three leucine residues were critical for F fusogenicity and the rescue of AcMNPV infectivity. Our results support the view that the leucine zipper-like HR1 domain is important to safeguard the proper folding, glycosylation, and fusogenicity of baculovirus F proteins.  相似文献   

5.
Many retroviruses, including the human and simian immunodeficiency viruses, contain a leucine zipper-like repeat in a highly conserved region of the external domain of the transmembrane (TM) glycoprotein. This region has been postulated to play a role in stabilizing the oligomeric form of these molecules. To determine what role this region might play in envelope structure and function, several mutations were engineered into the middle isoleucine of the leucine zipper-like repeat of the human immunodeficiency virus type 1 (HIV-1) TM protein. A phenotypic analysis of these mutants demonstrated that conservative mutations (Ile to Val or Leu) did not block the ability of the viral glycoprotein to mediate cell-cell fusion or affect virus infectivity. In contrast, each of the other mutations, except for the Ile-to-Ala change, completely inhibited the ability of the glycoprotein to fuse HeLa-T4 cells and of mutant virions to infect H9 cells. The alanine mutation produced an intermediate phenotype in which both cell fusion and infectivity were significantly reduced. Thus, the biological activity of the glycoprotein titrates with the hydrophobicity of the residue in this position. None of the mutations affected the synthesis, oligomer formation, transport, or processing of the HIV glycoprotein complex. Although these results do not rule out a role for the leucine zipper region in glycoprotein oligomerization, they clearly point to a critical role for it in a post-CD4 binding step in HIV membrane fusion and virus entry.  相似文献   

6.
Envelope oligomerization is thought to serve several crucial functions during the life cycle of human immunodeficiency virus type 1 (HIV-1). We recently reported that virus entry requires coiled-coil formation of the leucine zipper-like domain of the HIV-1 transmembrane envelope glycoprotein gp41 (C. Wild, T. Oas, C. McDanal, D. Bolognesi, and T. Matthews, Proc. Natl. Acad. Sci. USA 89:10537-10541, 1992; C. Wild, J. W. Dubay, T. Greenwell, T. Baird, Jr., T. G. Oas, C. McDanal, E. Hunter, and T. Matthews, Proc. Natl. Acad. Sci. USA 91:12676-12680, 1994). To determine the oligomeric state mediated by this region of the envelope, we have expressed the zipper motif as a fusion partner with the monomeric maltose-binding protein of Escherichia coli. The biophysical properties of this protein were characterized by velocity and equilibrium sedimentation, size exclusion chromatography, light scattering, and chemical cross-linking analyses. Results indicate that the leucine zipper sequence from HIV-1 is capable of multimerizing much larger and otherwise monomeric proteins into extremely stable tetramers. Recombinant proteins containing an alanine or a serine substitution at a critical isoleucine residue within the zipper region were also generated and similarly analyzed. The alanine- and serine-substituted proteins behaved as tetrameric and monomeric species, respectively, consistent with the influence of these same substitutions on the helical coiled-coil structure of synthetic peptide models. On the basis of these findings, we propose that the fusogenic gp4l structure involves tetramerization of the leucine zipper domain which is situated approximately 30 residues from the N-terminal fusion peptide sequence.  相似文献   

7.
Nitric oxide (NO) and nitrovasodilators induce vascular smooth muscle cell relaxation in part by cGMP-dependent protein kinase (cGK)-mediated activation of myosin phosphatase, which dephosphorylates myosin light chains. We recently found that cGMP-dependent protein kinase 1alpha binds directly to the myosin-binding subunit (MBS) of myosin phosphatase via the leucine/isoleucine zipper of cGK. We have now studied the role of the leucine zipper domain of MBS in dimerization with cGK and the leucine/isoleucine zipper and leucine zipper domains of both proteins in homodimerization. Mutagenesis of the MBS leucine zipper domain disrupts cGKIalpha-MBS dimerization. Mutagenesis of the MBS leucine zipper eliminates MBS homodimerization, while similar disruption of the cGKIalpha leucine/isoleucine zipper does not prevent formation of cGK dimers. The MBS leucine zipper domain is phosphorylated by cGK, but this does not have any apparent effect on heterodimer formation between the two proteins. MBS LZ mutants that are unable to bind cGK were poor substrates for cGK. These data support the theory that the MBS leucine zipper domain is necessary and sufficient to mediate both MBS homodimerization and binding of the protein to cGK. In contrast, the leucine/isoleucine zipper of cGK is required for binding to MBS, but not for cGK homodimerization. These data support that the MBS and cGK leucine zipper domains mediate the interaction between these two proteins. The contribution of these domains to both homodimerization and their specific interaction with each other suggest that additional regulatory mechanisms involving these domains may exist.  相似文献   

8.
Src homology 3 domain-containing proline-rich kinase (SPRK)/mixed lineage kinase-3 is a serine/threonine kinase that has been identified as an upstream activator of the c-Jun NH(2)-terminal kinase (JNK) pathway. SPRK is capable of activating MKK4 by phosphorylation of serine and threonine residues, and mutant forms of MKK4 that lack the phosphorylation sites Ser(254) and Thr(258) block SPRK-induced JNK activation. A region of 63 amino acids following the kinase domain of SPRK is predicted to form a leucine zipper. The leucine zipper domain of SPRK has been shown to be necessary and sufficient for SPRK oligomerization, but its role in regulating activation of SPRK and downstream signaling remains unclear. In this study, we substituted a proposed stabilizing leucine residue in the zipper domain with a helix-disrupting proline to abrogate zipper-mediated SPRK oligomerization. We demonstrate that constitutively activated Cdc42 fully activates this monomeric SPRK mutant in terms of both autophosphorylation and histone phosphorylation activity and induces the same in vivo phosphorylation pattern as wild type SPRK. However, this catalytically active SPRK zipper mutant is unable to activate JNK. Our data show that the monomeric SPRK mutant fails to phosphorylate one of the two activating phosphorylation sites, Thr(258), of MKK4. These studies suggest that zipper-mediated SPRK oligomerization is not required for SPRK activation by Cdc42 but instead is critical for proper interaction and phosphorylation of a downstream target, MKK4.  相似文献   

9.
Melittin, a naturally occurring antimicrobial peptide, exhibits strong lytic activity against both eukaryotic and prokaryotic cells. Despite a tremendous amount of work done, very little is known about the amino acid sequence, which regulates its toxic activity. With the goal of understanding the basis of toxic activity and poor cell selectivity in melittin, a leucine zipper motif has been identified. To evaluate the possible structural and functional roles of this motif, melittin and its two analogs, after substituting the heptadic leucine by alanine, were synthesized and characterized. Functional studies indicated that alanine substitution in the leucine zipper motif resulted in a drastic reduction of the hemolytic activity of melittin. However, interestingly, both the designed analogs exhibited antibacterial activity comparable to melittin. Mutations caused a significant decrease in the membrane permeability of melittin in zwitterionic but not in negatively charged lipid vesicles. Although both the analogs exhibited similar secondary structures in the presence of negatively charged lipid vesicles as melittin, they failed to adopt a significant helical structure in the presence of zwitterionic lipid vesicles. Results suggest that the substitution of heptadic leucine by alanine impaired the assembly of melittin in an aqueous environment and its localization only in zwitterionic but not in negatively charged membrane. Altogether, the results suggest the identification of a structural element in melittin, which probably plays a prominent role in regulating its toxicity but not antibacterial activity. The results indicate that cell selectivity in some antimicrobial peptides can probably be introduced by modulating their assembly in an aqueous environment.  相似文献   

10.
Putative intersubunit electrostatic interactions between charged amino acids on the surfaces of the dimer interfaces of leucine zippers (g-e'' ion pairs) have been implicated as determinants of dimerization specificity. To evaluate the importance of these ionic interactions in determining the specificity of dimer formation, we constructed a pool of > 65,000 GCN4 leucine zipper mutants in which all the e and g positions are occupied by different combinations of alanine, glutamic acid, lysine, or threonine. The oligomerization properties of these mutants were evaluated based on the phenotypes of cells expressing lambda repressor-leucine zipper fusion proteins. About 90% of the mutants do not form stable homooligomers. Surprisingly, approximately 8% of the mutant sequences have phenotypes consistent with the formation of higher-order (> dimer) oligomers, which can be classified into three types based on sequence features. The oligomerization states of mutants from two of these types were determined by characterizing purified fusion proteins. The Type I mutant behaved as a tetramer under all tested conditions, whereas the Type III mutant formed a variety of higher-order oligomers, depending on the solution conditions. Stable homodimers comprise less than 3% of the pool; several g-e'' positions in these mutants could form attractive ion pairs. Putative repulsive ion pairs are not found among the homodimeric mutants. However, patterns of charged residues at the e and g positions do not seem to be sufficient to predict either homodimer or heterodimer formation among the mutants.  相似文献   

11.
12.
Leucine zippers are oligomerization domains used in a wide range of proteins. Their structure is based on a highly conserved heptad repeat sequence in which two key positions are occupied by leucines. The leucine zipper of the cell cycle-regulated Nek2 kinase is important for its dimerization and activation. However, the sequence of this leucine zipper is most unusual in that leucines occupy only one of the two hydrophobic positions. The other position, depending on the register of the heptad repeat, is occupied by either acidic or basic residues. Using NMR spectroscopy, we show that this leucine zipper exists in two conformations of almost equal population that exchange with a rate of 17 s(-1). We propose that the two conformations correspond to the two possible registers of the heptad repeat. This hypothesis is supported by a cysteine mutant that locks the protein in one of the two conformations. NMR spectra of this mutant showed the predicted 2-fold reduction of peaks in the (15)N HSQC spectrum and the complete removal of cross peaks in exchange spectra. It is possible that interconversion of these two conformations may be triggered by external signals in a manner similar to that proposed recently for the microtubule binding domain of dynein and the HAMP domain. As a result, the leucine zipper of Nek2 kinase is the first example where the frameshift of coiled-coil heptad repeats has been directly observed experimentally.  相似文献   

13.
14.
Epstein-Barr virus (EBV) infects B lymphocytes and epithelial cells. While the glycoproteins required for entry into these two cell types differ, the gH/gL glycoprotein complex is essential for entry into both epithelial and B cells. Analysis of gH protein sequences from three gammaherpesviruses (EBV, marmoset, and rhesus) revealed a potential coiled-coil domain in the N terminus. Four leucines located in this region in EBV gH were replaced by alanines by site-directed mutagenesis and analyzed for cell-cell membrane fusion with B cells and epithelial cells. Reduction in fusion activity was observed for mutants containing L65A and/or L69A mutations, while substitutions in L55 and L74 enhanced the fusion activity of the mutant gH/gL complexes with both cell types. All of the mutants displayed levels of cell surface expression similar to those of wild-type gH and interacted with gL and gp42. The observation that a conservative mutation of leucine to alanine in the N terminus of EBV gH results in fusion-defective mutant gH/gL complexes is striking and points to an important role for this region in EBV-mediated membrane fusion with B lymphocytes and epithelial cells.  相似文献   

15.
Normal membrane protein function requires trafficking from the endoplasmic reticulum. Here, we studied processing of the KCNQ1 channel mutated in LQT1, the commonest form of the long QT syndrome. Serial C terminus truncations identified a small region (amino acids (aa) 610-620) required for normal cell surface expression. Non-trafficked truncations assembled as tetramers but were nevertheless retained in the endoplasmic reticulum. Further mutagenesis did not identify specific residues mediating channel processing; cell surface expression was preserved with the mutation of known trafficking motifs in the channel and with alanine scanning across aa 610-620. Structural prediction algorithms place aa 610-620 at the C-terminal end of an alpha-helix (aa 586-618) that includes a leucine zipper and is part of a coiled coil. Mutants disrupting the leucine zipper but preserving the predicted coiled coil reached the cell surface, whereas those disrupting the coil did not. These data suggest that specific protein-protein interactions are required for normal channel processing. Further biochemical studies ruled out three candidate proteins, namely KCNE1, yotiao, and KCNQ1 itself, as effectors of this coiled coil-mediated trafficking. Four LQT1 mutations within this helix generated little or no current and were not expressed on the cell surface, whereas LQT1 mutations in adjacent residues, which produce a milder clinical phenotype, generate only slightly reduced current and are expressed on the cell surface. These data suggest that mutations within this domain cause human disease by interfering with normal channel processing. More generally, we have identified a domain whose structural integrity is required for normal surface expression of the KCNQ1 channel.  相似文献   

16.
The 120-kDa proto-oncogenic protein c-Cbl is a multidomain adaptor protein that is phosphorylated in response to the stimulation of a broad range of cell surface receptors and participates in the assembly of signaling complexes that are formed as a result of the activation of various signal transduction pathways. Several structural features of c-Cbl, including the phosphotyrosine-binding domain, proline-rich domain, and motifs containing phosphotyrosine and phosphoserine residues, mediate the association of c-Cbl with other components of these complexes. In addition to those domains that have been demonstrated to play a role in the binding of c-Cbl to other signaling molecules, c-Cbl also contains a RING finger motif and a putative leucine zipper. In this study, we demonstrate that the previously identified putative leucine zipper mediates the formation of Cbl homodimers. Using the yeast two-hybrid system, we show that deletion of the leucine zipper domain is sufficient to abolish Cbl homodimerization, while Cbl mutants carrying extensive N-terminal truncations retain the ability to dimerize with the full-length Cbl. The requirement of the leucine zipper for the homodimerization of Cbl was confirmed by in vitro binding assays, using deletion variants of the C-terminal half of Cbl with and without the leucine zipper domain, and in cells using Myc and green fluorescent protein (GFP) N-terminal-tagged Cbl variants. In cells, the deletion of the leucine zipper caused a decrease in both the tyrosine phosphorylation of Cbl and its association with the epidermal growth factor receptor following stimulation with epidermal growth factor, thus demonstrating a role for the leucine zipper in c-Cbl's signaling functions. Thus, the leucine zipper domain enables c-Cbl to homodimerize, and homodimerization influences Cbl's signaling function, modulating the activity of Cbl itself and/or affecting Cbl's associations with other signaling proteins in the cell.  相似文献   

17.
The baculovirus GP64 envelope fusion protein (GP64 EFP) is the major envelope glycoprotein of the budded virion and has been shown to mediate acid-triggered membrane fusion both in virions and when expressed alone in transfected cells. Using site-directed mutagenesis and functional assays for oligomerization, transport, and membrane fusion, we localized two functional domains of GP64 EFP. To identify a fusion domain in the GP64 EFP of the Orgyia pseudotsugata multiple nuclear polyhedrosis virus (OpMNPV), we examined two hydrophobic regions in the GP64 EFP ectodomain. Hydrophobic region I (amino acids 223 to 228) is a cluster of 6 hydrophobic amino acids exhibiting the highest local hydrophobicity in the ectodomain. Hydrophobic region II (amino acids 330 to 338) lies within a conserved region of GP64 EFP that contains a heptad repeat of leucine residues and is predicted to form an amphipathic alpha-helix. In region I, nonconservative amino acid substitutions at Leu-226 and Leu-227 (at the center of the hydrophobic cluster) completely abolished fusion activity but did not prevent GP64 EFP oligomerization or surface localization. To confirm the role of region I in membrane fusion activity, we used a synthetic 21-amino-acid peptide to generate polyclonal antibodies against region I and demonstrated that antipeptide antibodies were capable of both neutralizing membrane fusion activity and reducing infectivity of the virus. In hydrophobic region II, mutations were designed to disrupt several structural characteristics: a heptad repeat of leucine, a predicted alpha-helix, or the local hydrophobicity along one face of the helix. Single alanine substitutions for heptad leucines did not prevent oligomerization, transport, or fusion activity. However, multiple alanine substitutions or proline (helix-destabilizing) substitutions disrupted both oligomerization and transport of GP64 EFP. In addition, a deletion that removed region II and the predicted alpha-helix was defective for oligomerization, whereas a larger deletion that retained region II and the predicted helix was oligomerized. These results indicate that region II is required for oligomerization and transport and suggest that the predicted helical structure of this region may be important for this function. Thus, by using mutagenesis, functional assays, and antibody inhibition, two functional domains were localized within the baculovirus GP64 EFP: a fusion domain located at amino acids 223 to 228 and an oligomerization domain located at amino acids 327 to 335 within a predicted amphipathic alpha-helix.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号