首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The relationship between arterialized blood lactate concentration [( La-]) and O2 uptake (VO2) was examined during a total of 23 tests by eight subjects. Exercise was on a cycle ergometer with work rate incremented from loadless pedaling to exhaustion as a 50-W/min ramp function. Two different mathematical models were studied. One model employed a log-log transformation of [La-] and VO2 to yield [La-] threshold as proposed by Beaver et al. (J. Appl. Physiol. 59: 1936-1940, 1985). The other model was a continuous exponential plus constant of the form La- = a + b[exp(cVO2)]. In 21 of 23 data sets, the mean square error (MSE) of the continuous model was less than that of the log-log model (P less than 0.001). The MSE was on average 3.5 times greater in the log-log model than in the continuous model. The residuals were randomly distributed about the line of best fit for the continuous model. In contrast, the log-log model showed a nonrandom pattern indicating an inappropriate model. As an index of the position of the [La-]-VO2 continuous model, the VO2 at which the rate of increase of [La-] equaled the rate of increase of VO2 (d[La-]/dVO2 = 1) was determined. This VO2 was 2.241 +/- 0.081 l/min, which averaged 64.6% of maximal VO2. It is proposed that this lactate slope index could be used as a relative indicator of fitness instead of the previously applied threshold concept. The change in [La-] could be better described mathematically by a continuous model rather than the threshold model of Beaver et al.  相似文献   

3.
One technique employed by competitive breath-hold divers to increase diving depth is to hyperinflate the lungs with glossopharyngeal breathing (GPB). Our aim was to assess the relationship between measured volume and pressure changes due to GPB. Seven healthy male breath-hold divers, age 33 (8) [mean (SD)] years were recruited. Subjects performed baseline body plethysmography (TLC(PRE)). Plethysmography and mouth relaxation pressure were recorded immediately following a maximal GPB maneuver at total lung capacity (TLC) (TLC(GPB)) and within 5 min after the final GPB maneuver (TLC(POST)). Mean TLC increased from TLC(PRE) to TLC(GPB) by 1.95 (0.66) liters and vital capacity (VC) by 1.92 (0.56) liters (P < 0.0001), with no change in residual volume. There was an increase in TLC(POST) compared with TLC(PRE) of 0.16 liters (0.14) (P < 0.02). Mean mouth relaxation pressure at TLC(GPB) was 65 (19) cmH(2)O and was highly correlated with the percent increase in TLC (R = 0.96). Breath-hold divers achieve substantial increases in measured lung volumes using GPB primarily from increasing VC. Approximately one-third of the additional air was accommodated by air compression.  相似文献   

4.
In adult canines following major lung resection, the remaining lobes expand asymmetrically, associated with alveolar tissue regrowth, remodeling, and progressive functional compensation over many months. To permit noninvasive longitudinal assessment of regional growth and function, we performed serial high-resolution computed tomography (HRCT) on six male dogs (~9 mo old, 25.0 ± 4.5 kg, ±SD) at 15 and 30 cmH(2)O transpulmonary pressure (Ptp) before resection (PRE) and 3 and 15 mo postresection (POST3 and POST15, respectively) of 65-70% of lung units. At POST3, lobar air volume increased 83-148% and tissue (including microvascular blood) volume 120-234% above PRE values without further changes at POST15. Lobar-specific compliance (Cs) increased 52-137% from PRE to POST3 and 28-79% from POST3 to POST15. Inflation-related parenchyma strain and shear were estimated by detailed registration of corresponding anatomical features at each Ptp. Within each lobe, regional displacement was most pronounced at the caudal region, whereas strain was pronounced in the periphery. Regional three-dimensional strain magnitudes increased heterogeneously from PRE to POST3, with further medial-lateral increases from POST3 to POST15. Lobar principal strains (PSs) were unchanged or modestly elevated postresection; changes in lobar maximum PS correlated inversely with changes in lobar air and tissue volumes. Lobar shear distortion increased in coronal and transverse planes at POST3 without further changes thereafter. These results establish a novel use of functional HRCT to map heterogeneous regional deformation during compensatory lung growth and illustrate a stimulus-response feedback loop whereby postresection mechanical stress initiates differential lobar regrowth and sustained remodeling, which in turn, relieves parenchyma stress and strain, resulting in progressive increases in lobar Cs and a delayed increase in whole lung Cs.  相似文献   

5.
The effects of beta-blockade on the responses of oxygen uptake (VO2), heart rate (HR) and blood lactate (La-) were examined during ramp cycle ergometer tests (50 W.min-1 ramp slope) in 8 healthy male volunteers. Each subject took placebo, or one of four different doses of three different beta-blockers (propranolol, metoprolol or oxprenolol) 2 h prior to each test for a total of 15 exercise tests. VO2 was measured breath-by-breath, HR was sampled once per breath, and La- was obtained every minute. Linear regression analysis was applied to VO2 and HR data to obtain the kinetic parameter total lag time (TLT) and a slope value. La- was analyzed by a continuous exponential model with the lactate slope index (LSI) being derived from the individual response curves. Submaximal exercise HR was significantly depressed at the baseline as well as during the ramp tests by beta-blockade. TLT for HR was significantly affected by beta-blockade, with a dose dependent shift from a placebo value of 16 to 26 s with placebo to a value of -40 to -60 s at the highest dose. Slope of HR was significantly depressed relative to placebo. VO2 kinetics assessed by TLT were not significantly affected by beta-blockade. This slope of the VO2 vs work rate relationship was significantly less than placebo only at the highest dose of beta-blocker. The LSI was not significantly affected by beta-blockade. In contrast with the clear impairment of HR response to exercise during beta-blockade, both the VO2 and La- responses appear to be relatively unaffected by beta-blockade during ramp exercise tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Adiponectin is an adipocytokine that is hypothesized to be involved in the regulation of insulin action. The purpose of the present investigation was to determine whether plasma adiponectin is altered in conjunction with enhanced insulin action with exercise training. An insulin sensitivity index (S(I)) and fasting levels of glucose, insulin, and adiponectin were assessed before and after 6 mo of exercise training (4 days/wk for approximately 45 min at 65-80% peak O(2) consumption) with no loss of body mass (PRE, 91.9 +/- 3.8 kg vs. POST, 91.6 +/- 3.9 kg) or fat mass (PRE, 26.5 +/- 1.8 kg vs. POST, 26.7 +/- 2.2 kg). Insulin action significantly (P < 0.05) improved with exercise training (S(I) +98%); however, plasma adiponectin concentration did not change (PRE, 6.3 +/- 1.5 microg/ml vs. POST, 6.6 +/- 1.8 microg/ml). In contrast, in a separate group of subjects examined before and after weight loss, there was a substantial increase in adiponectin (+281%), which was accompanied by enhanced insulin action (S(I), +432%). These data suggest that adiponectin is not a contributory factor to the exercise-related improvements in insulin sensitivity.  相似文献   

7.
The present investigation was undertaken to examine the relationship between plasma potassium (K+) and ventilation (VE) during incremental exercise. Blood lactate (La-) was also measured, and its relationship with VE was similarly examined. Eight endurance-trained triathletes (ET) and eight active but untrained men (UT) performed an incremental cycling test to volitional fatigue. Maximal oxygen uptake (VO2max) and oxygen uptake (VO2) at lactate threshold (LT) were higher (P < 0.05) in ET (VO2max 4.60 +/- 0.10 l/min, LT 2.77 +/- 0.85 l/min) than in UT (VO2max 3.79 +/- 0.11 l/min, LT 1.94 +/- 0.60 l/min). There were significant (P < 0.05) correlations between VE and K+ (UT 0.87, ET 0.77) and between VE and La- (UT 0.88, ET 0.85). In ET compared with UT, VE was lower (P < 0.05) at 330 W, K+ was lower at 300 and 330 W, and La- was lower at all work loads > 90 W. These results suggest that K+ may make an important contribution to the regulation of ventilation during incremental exercise and that endurance training attenuates the K+ response to that exercise.  相似文献   

8.
The purpose of this study was to examine changes in body composition (BC) and physical performance tests (PT) resulting from a competitive season in soccer. Twenty-five male collegiate players (age = 19.9 +/- 1.3 years; height = 177.6 +/- 6.4 cm; body mass = 77.6 +/- 8.6 kg, and percentage body fat = 12.8 +/- 5.2%) were tested before (PRE) and after (POST) the 2003-2004 National Collegiate Athletic Association season. The following tests were performed: BC (anthropometric and dual energy x-ray absorptiometry measurements), vertical jump (VJ), 9.1-m (9 m) and 36.5-m (36 m) sprint, lower-body power (LP), total body power (TP), and cardiorespiratory endurance (VO(2)max). Training was divided into soccer-specific training: field warm-up drills, practices, games, and additional conditioning sessions. A daily, unplanned, nonlinear periodization model was used to assign session volume and intensity for strength sessions (total repetitions < or =96 and workload was > or =80% of 1 repetition maximum). For the entire team, body mass significantly increased by 1.5 +/- 0.4 kg from PRE to POST due to a significant increase in total lean tissue (0.9 +/- 0.2 kg). Regionally, lean tissue mass significantly increased in the legs (0.4 +/- 0.0 kg) and trunk (0.3 +/- 0.1 kg). Physical performance variables were very similar for the entire team at PRE and POST; VJ (cm) = 61.9 +/- 7.1 PRE vs. 63.3 +/- 8.0 POST, 9.1-m (s) = 1.7 +/- 0.1 PRE and POST, 36.5-m (s) = 5.0 +/- 0.2 PRE and POST, predicted VO(2)max (ml.kg.min(-1))= 59.8 +/- 3.3 PRE vs. 60.9 +/- 3.4 POST. The only significant improvements across the season were for TP (17.3%) and for LP (10.7%). In conclusion, soccer athletes who begin a season with a high level of fitness can maintain, and in some cases improve, body composition and physical performance from before to after a competitive season. A correct combination of soccer-specific practices and strength and conditioning programs can maintain and develop physical performance, allowing a soccer athlete to perform optimally throughout pre-, in-, and postseason play.  相似文献   

9.
We hypothesized that a period of endurance training would result in a speeding of muscle phosphocreatine concentration ([PCr]) kinetics over the fundamental phase of the response and a reduction in the amplitude of the [PCr] slow component during high-intensity exercise. Six male subjects (age 26 +/- 5 yr) completed 5 wk of single-legged knee-extension exercise training with the alternate leg serving as a control. Before and after the intervention period, the subjects completed incremental and high-intensity step exercise tests of 6-min duration with both legs separately inside the bore of a whole-body magnetic resonance spectrometer. The time-to-exhaustion during incremental exercise was not changed in the control leg [preintervention group (PRE): 19.4 +/- 2.3 min vs. postintervention group (POST): 19.4 +/- 1.9 min] but was significantly increased in the trained leg (PRE: 19.6 +/- 1.6 min vs. POST: 22.0 +/- 2.2 min; P < 0.05). During step exercise, there were no significant changes in the control leg, but end-exercise pH and [PCr] were higher after vs. before training. The time constant for the [PCr] kinetics over the fundamental exponential region of the response was not significantly altered in either the control leg (PRE: 40 +/- 13 s vs. POST: 43 +/- 10 s) or the trained leg (PRE: 38 +/- 8 s vs. POST: 40 +/- 12 s). However, the amplitude of the [PCr] slow component was significantly reduced in the trained leg (PRE: 15 +/- 7 vs. POST: 7 +/- 7% change in [PCr]; P < 0.05) with there being no change in the control leg (PRE: 13 +/- 8 vs. POST: 12 +/- 10% change in [PCr]). The attenuation of the [PCr] slow component might be mechanistically linked with enhanced exercise tolerance following endurance training.  相似文献   

10.
Few studies have investigated the short-term effects of a very low carbohydrate ketogenic diet (KD) on body composition and substrate utilization in trained individuals. This study investigated effects on substrate utilization during incremental exercise, and changes in body composition, in response to seven days ad libitum consumption of a KD by athletes from endurance sports. Nine young trained males (age, 21.8 ± 1.9 y; height, 1.83 ± 0.11 m; body mass, 78.4 ± 13.8 kg; body fat, 14.9 ± 3.9%; VO2peak, 54.3 ± 5.9 mL kg-1 min-1) were assessed before (day 0; PRE) and after (day 7; POST) seven days of consuming an ad libitum KD. Following an overnight fast, body composition was measured by dual x-ray absorptiometry, and substrate utilization was measured during an incremental (3 min stages, 35 W increments) exercise test on a cycle ergometer. After KD, Wmax (PRE, 295 ± 30 W; POST, 292 ± 38 W) and VO2peak (PRE, 4.18 ± 0.33 L min-1; POST, 4.10 ± 0.43 L min-1) were unchanged, whereas body mass [-2.4 (-3.2, -1.6) kg; P < 0.001, d = 0.21], fat mass [-0.78 (-1.10, -0.46) kg; P < 0.001, d = 0.22] and fat-free mass (FFM) [-1.82 (-3.12, -0.51) kg; P = 0.013, d = 0.22] all decreased. The respiratory exchange ratio was lower, and rates of fat oxidation were higher, at POST across a range of exercise intensities. Maximal fat oxidation rate was ~1.8-fold higher after KD (PRE, 0.54 ± 0.13 g min-1; POST, 0.95 ± 0.24 g min-1; P < 0.001, d = 2.2). Short-term KD results in loss of both fat mass and FFM, increased rates of fat oxidation and a concomitant reduction in CHO utilization even at moderate-to-high intensities of exercise.  相似文献   

11.
Near-infrared spectroscopy (NIRS) could allow insights into controversial issues related to blood lactate concentration ([La](b)) increases at submaximal workloads (). We combined, on five well-trained subjects [mountain climbers; peak O(2) consumption (VO(2peak)), 51.0 +/- 4.2 (SD) ml. kg(-1). min(-1)] performing incremental exercise on a cycle ergometer (30 W added every 4 min up to voluntary exhaustion), measurements of pulmonary gas exchange and earlobe [La](b) with determinations of concentration changes of oxygenated Hb (Delta[O(2)Hb]) and deoxygenated Hb (Delta[HHb]) in the vastus lateralis muscle, by continuous-wave NIRS. A "point of inflection" of [La](b) vs. was arbitrarily identified at the lowest [La](b) value which was >0.5 mM lower than that obtained at the following. Total Hb volume (Delta[O(2)Hb + HHb]) in the muscle region of interest increased as a function of up to 60-65% of VO(2 peak), after which it remained unchanged. The oxygenation index (Delta[O(2)Hb - HHb]) showed an accelerated decrease from 60- 65% of VO(2 peak). In the presence of a constant total Hb volume, the observed Delta[O(2)Hb - HHb] decrease indicates muscle deoxygenation (i.e., mainly capillary-venular Hb desaturation). The onset of muscle deoxygenation was significantly correlated (r(2) = 0.95; P < 0.01) with the point of inflection of [La](b) vs., i.e., with the onset of blood lactate accumulation. Previous studies showed relatively constant femoral venous PO(2) levels at higher than approximately 60% of maximal O(2) consumption. Thus muscle deoxygenation observed in the present study from 60-65% of VO(2 peak) could be attributed to capillary-venular Hb desaturation in the presence of relatively constant capillary-venular PO(2) levels, as a consequence of a rightward shift of the O(2)Hb dissociation curve determined by the onset of lactic acidosis.  相似文献   

12.
Seven trained male cyclists (VO2max = 4.42 +/- 0.23 l.min-1; weight 71.7 +/- 2.7 kg, mean +/- SE) completed two incremental cycling tests on the cycle ergometer for the estimation of the "individual anaerobic threshold" (IAT). The cyclists completed three more exercises in which the work rate incremented by the same protocol, but upon reaching selected work rates of approximately 40, 60 and 80% VO2max, the subjects cycled for 60 min or until exhaustion. In these constant load studies, blood lactate concentration was determined on arterialized venous ([La-]av) and deep venous blood ([La-]v) of the resting forearm. The av-v lactate gradient across the inactive forearm muscle was -0.08 mmol.l-1 at rest. After 3 min at each of the constant load work rates, the gradients were +0.05, +0.65* and +1.60* mmol.l-1 (*P less than 0.05). The gradients after 10 min at these same work rates were -0.09, +0.24 and +1.03* mmol.l-1. For the two highest work rates taken together, the lactate gradient was less at 10 min than 3 min constant load exercise (P less than 0.05). The [La-]av was consistently higher during prolonged exercise at both 60 and 80% VO2max than that observed at the same work rate during progressive exercise. At the highest work rate (at or above the IAT), time to exhaustion ranged from 3 to 36 min in the different subjects. These data showed that [La-] uptake across resting muscle continued to increase to work rates above the IAT. Further, the greater av-v lactate gradient at 3 min than 10 min constant load exercise supports the concept that inactive muscle might act as a passive sink for lactate in addition to a metabolic site.  相似文献   

13.
Restoration of communities invaded by exotic plants requires effective eradication of the invader and reestablishment of the resident plant community. Despite the commonly cited need for techniques to accomplish such goals, studies that test strategies for removing invasive plants, monitor effects on resident communities, and incorporate replicate sites are generally lacking. Microstegium vimineum is an exotic annual grass that is rapidly invading forests in the eastern United States and threatening to reduce biodiversity and inhibit forest regeneration. I conducted a field experiment at eight sites over two growing seasons in southern Indiana to evaluate hand-weeding (HW), a postemergent grass-specific herbicide (POST), and the postemergent herbicide plus a preemergent herbicide (POST + PRE) for removing Microstegium . Compared to reference plots (REF), the three treatments each reduced Microstegium biomass at the end of the growing seasons to relatively low levels. However, after the second year of the experiment, POST and POST + PRE resulted in very little spring cover of Microstegium , but HW plots were significantly reinvaded. HW and POST, but not POST + PRE, increased resident plant community productivity and spring resident community cover compared to reference plots. The amount of light at the research sites did not alter the effectiveness of treatments, but the recovery of resident communities was positively correlated with light availability under HW and POST + PRE. These results indicate that natural systems invaded by Microstegium can be restored using the POST or HW treatments, which will effectively remove the invasion and allow the resident plant community to recover when used over multiple growing seasons.  相似文献   

14.
We examined the effects of 2 plyometric training programs, equalized for training volume, followed by a 4-week recovery period of no plyometric training on anaerobic power and vertical jump performance. Physically active, college-aged men were randomly assigned to either a 4-week (n = 19, weight = 73.4 +/- 7.5 kg) or a 7-week (n = 19, weight = 80.1 +/- 12.5 kg) program. Vertical jump height, vertical jump power, and anaerobic power via the Margaria staircase test were measured pretraining (PRE), immediately posttraining (POST), and 4 weeks posttraining (POST-4). Vertical jump height decreased in the 4-week group PRE (67.8 +/- 7.9 cm) to POST (65.4 +/- 7.8 cm). Vertical jump height increased from PRE to POST-4 in 4-week (67.8 +/- 7.9 to 69.7 +/- 7.6 cm) and 7-week (64.6 +/- 6.2 to 67.2 +/- 7.6 cm) training programs. Vertical jump power decreased in the 4-week group from PRE (8,660.0 +/- 546.5 W) to POST (8,541.6 +/- 557.4 W) with no change in the 7-week group. Vertical jump power increased PRE to POST-4 in 4-week (8,660.0 +/- 546.5 W to 8,793.6 +/- 541.4 W) and 7-week (8,702.8 +/- 527.4 W to 8,931.5 +/- 537.6 W) training programs. Anaerobic power improved in the 7-week group from PRE (1,121.9 +/- 174.7 W) to POST (1,192.2 +/- 189.1 W) but not the 4-week group. Anaerobic power significantly improved PRE to POST-4 in both groups. There were no significant differences between the 2 training groups. Four-week and 7-week plyometric programs are equally effective for improving vertical jump height, vertical jump power, and anaerobic power when followed by a 4-week recovery period. However, a 4-week program may not be as effective as a 7-week program if the recovery period is not employed.  相似文献   

15.
Chronic heart failure (CHF) may impair lung gas diffusion, an effect that contributes to exercise limitation. We investigated whether diffusion improvement is a mechanism whereby physical training increases aerobic efficiency in CHF. Patients with CHF (n = 16) were trained (40 min of stationary cycling, 4 times/wk) for 8 wk; similar sedentary patients (n = 15) were used as controls. Training increased lung diffusion (DlCO, +25%), alveolar-capillary conductance (DM, +15%), pulmonary capillary blood volume (VC, +10%), peak exercise O2 uptake (peak VO2, +13%), and VO2 at anaerobic threshold (AT, +20%) and decreased the slope of exercise ventilation to CO2 output (VE/VCO2, -14%). It also improved the flow-mediated brachial artery dilation (BAD, from 4.8 +/- 0.4 to 8.2 +/- 0.4%). These changes were significant compared with baseline and controls. Hemodynamics were obtained in the last 10 patients in each group. Training did not affect hemodynamics at rest and enhanced the increase of cardiac output (+226 vs. +187%) and stroke volume (+59 vs. +49%) and the decrease of pulmonary arteriolar resistance (-28 vs. -13%) at peak exercise. Hemodynamics were unchanged in controls after 8 wk. Increases in DlCO and DM correlated with increases in peak VO2 (r = 0.58, P = 0.019 and r = 0.51, P = 0.04, respectively) and in BAD (r = 0.57, P < 0.021 and r = 0.50, P = 0.04, respectively). After detraining (8 wk), DlCO, DM, VC, peak VO2, VO2 at AT, VE/VCO2 slope, cardiac output, stroke volume, pulmonary arteriolar resistance at peak exercise, and BAD reverted to levels similar to baseline and to levels similar to controls. Results document, for the first time, that training improves DlCO in CHF, and this effect may contribute to enhancement of exercise performance.  相似文献   

16.
People are exposed to heat regularly due to their jobs or daily habits in cold winter, but few studies have reported whether parallel heat and cold exposure and diminish cold acclimation. This study was conducted to investigate the effects of alternating exposure to cold and heat on cold tolerance in eight young males. A daily acclimation program to cold and heat, which consisted of 2-h sitting at 10 °C air in the morning and 2-h running and rest at 30 °C air in the afternoon, was conducted for 14 consecutive days. Eight male subjects participated in a cold tolerance test (10 °C [ ± 0.3], 40%RH[ ± 3]) before (PRE) and after (POST) completing the alternating exposure program. During the cold tolerance test, subjects remained sitting upright on a chair for 60 min. Rectal temperature (Tre) was lower in POST than in PRE during the 60-min cold tolerance test (P = 0.027). During the cold tolerance test, systolic, diastolic, and mean arterial blood pressures in POST were lower than those in PRE (P = 0.006, P = 0.005, and P = 0.004). No significant differences in skin temperatures between PRE and POST were found for the cold tolerance test. There were no significant differences in energy expenditure during cold exposure between PRE and POST. Subjects felt less cold in POST than in PRE (P = 0.013) whereas there was no significant difference in overall thermal comfort between PRE and POST. These results suggest that cold adaptation can still occur in the presence of heat stress.  相似文献   

17.
Twenty-six members of a collegiate football team were randomly assigned to either a supplement (S) (3 g of beta-hydroxy beta-methylbutyrate [HMB] per day) or placebo (P) group. Testing occurred before (PRE) and at the end of 10 days of preseason football training camp (POST). During each testing session, subjects performed an anaerobic power test, and blood samples were obtained for testosterone, cortisol, creatine kinase, and myoglobin analysis. No differences in anaerobic power were seen between PRE and POST in either group. Cortisol concentrations were significantly decreased from PRE (333 +/- 81 nmol.L(-1)) to POST (246 +/- 79 nmol.L(-1)), and a sixfold increase was seen in creatine kinase concentrations at POST. However, no significant differences between the groups were seen. No significant time or group effects were observed in testosterone or myoglobin concentrations. Results suggest that short duration HMB supplementation does not provide any ergogenic benefit in collegiate football players during preseason training camp.  相似文献   

18.
Criteria for the identification of maximal steady state as related to state of conditioning were evaluated. 13 volunteers walker and/or ran during a series of 15 min tests on a treadmill. The speeds ranged from mild to exhaustive. Heart rate was monitored continuously; VO2 was determined from 6 min to 9 min; and venous blood was obtained at 10 min and 15 min for lactate analyses. Max VO2 was established for each subject. Subjects were classified on level of conditioning according to the quantity and quality of their activity record for the previous 6 months. The 10 min heart rate associated with a blood lactate level of 2.2 mM/L (MSSHR) was the best predictor of conditioning. The relative VO2 (% of max VO2) found with a 10 min blood lactate concentration of 2.2 mM/L (RMSSVO2) was almost as accurate as MSSHR in predicting state of conditioning. Changes in blood lactate levels between 10 min and 15 min were not significantly related to conditioning.  相似文献   

19.
Roux-en-Y-Gastric-Bypass (RYGB) reduces overall and diabetes-specific mortality by 40% and over 90%. This study aims to gain insight into the underlying mechanisms of this effect. We evaluated time-courses of glucose, insulin, C-peptide, and the incretin glucagon like peptide-1 (GLP-1) following an oral glucose load. Insulin-sensitivity was measured by a hyperinsulinemic-isoglycemic-clamp-test; glucose-turnover was determined using D-[6,6-(2)H(2)] glucose. Examinations were performed in six nondiabetic patients with excess weight before (PRE: BMI: 49.3 ± 3.2 kg/m(2)) and 7 months after RYGB (POST: BMI: 36.7 ± 2.9 kg/m(2)), in a lean (CON: BMI: 22.6 ± 0.6 kg/m(2)) and an obese control group (CONob) without history of gastrointestinal surgery (BMI: 34.7 ± 1.2 kg/m(2)). RYGB reduced fasting plasma concentrations of insulin and C-peptide (P < 0.01, respectively) whereas fasting glucose concentrations remained unchanged. After RYGB increase of C-peptide concentration following glucose ingestion was significantly higher compared to all other groups (dynamic-area under the curve (Dyn-AUC): 0-90 min: POST: 984 ± 115 ng·min/ml, PRE: 590 ± 67 ng·min/ml, CONob: 440 ± 44 ng·min/ml, CON: 279 ± 22 ng·min/ml, P < 0.01 respectively). Early postprandial increase of glucose concentration was however not affected. GLP-1 concentrations following glucose ingestion were sixfold higher after RYBG than before (P = 0.01). Insulin-stimulated glucose uptake tended to increase postoperatively (M-value: PRE: 1.8 ± 0.5, POST: 3.0 ± 0.3, not significant (n.s.)). Endogenous glucose production (EGP) was unaffected by RYGB. Hepatic insulin resistance index improved after RYGB and was then comparable to both control groups (PRE: 29.2 ± 4.3, POST: 12.6 ± 1.1, P < 0.01). RYGB results in hyper-secretion of insulin and C-peptide, whereas improvements of insulin resistance are minor and seem to occur rather in the liver and the adipose tissue than in the skeletal muscle.  相似文献   

20.
Bicarbonate buffering of lactic acid generated during exercise   总被引:5,自引:0,他引:5  
The pattern of decrease in arterial bicarbonate concentration ([HCO3-]) during progressive incremental exercise was compared with that of the rise in arterial lactate ([La-]) to determine the degree of buffering of lactic acid by bicarbonate. A mathematical model was derived for the change in [HCO3-] beyond the lactate threshold. This was based on a log-log transformation of the data, a model previously found to provide a very good fit to the [La-]-O2 consumption (VO2) relationship. The results of the analysis of incremental exercise data from 10 subjects show that the decrease in [HCO3-] very nearly matches the increase in [La-]. However, it was found by comparing regression models that the correspondence between [HCO3-] and [La-] could be improved by assuming that the [HCO3-] decrease was delayed until the arterial lactate level had increased by approximately 0.4 meq/l. This result is compatible with the existence of buffering mechanisms in the cell which buffer the initial increase of lactic acid. Beyond this initial buffering, lactic acid appears to be buffered almost entirely by the bicarbonate buffer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号