首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Withania somnifera (L.) is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicines. Pharmaceutical activities of this herb are associated with presence of secondary metabolites known as withanolides, a class of phytosteroids synthesized via mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate pathways. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the genes responsible for biosynthesis of these compounds. In this study, we have characterized two genes encoding 1-deoxy-d-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7) and 1-deoxy-d-xylulose-5-phosphate reductase (DXR; EC 1.1.1.267) enzymes involved in the biosynthesis of isoprenoids. The full-length cDNAs of W. somnifera DXS (WsDXS) and DXR (WsDXR) of 2,154 and 1,428 bps encode polypeptides of 717 and 475 amino acids residues, respectively. The expression analysis suggests that WsDXS and WsDXR are differentially expressed in different tissues (with maximal expression in flower and young leaf), chemotypes of Withania, and in response to salicylic acid, methyl jasmonate, as well as in mechanical injury. Analysis of genomic organization of WsDXS shows close similarity with tomato DXS in terms of exon–intron arrangements. This is the first report on characterization of isoprenoid biosynthesis pathway genes from Withania.  相似文献   

3.
5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.19), 3-dehydroquinate dehydratase (EC 4.2.1.10) and shikimate: NADP+ oxidoreductase (EC 1.1.1.25) were present in intact chloroplasts and root plastids isolated from pea seedling extracts by sucrose and modified-silica density gradient centrifugation. In young (approx. 10-d-old) seedling shoots the enzymes were predominantly chloroplastic; high-performance anion-exchange chromatography resolved minor isoenzymic activities not observed in density-gradientpurified chloroplasts. The initial enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) was also associated with intact density-gradient-purified chloroplasts. 3-Dehydroquinate synthase (EC 4.6.1.3) and shikimate kinase (EC 2.7.1.71) were detected together with the other pathway enzymes in stromal preparations from washed chloroplasts. Plastidic EPSP synthase was inhibited by micromolar concentrations of the herbicide glyphosate.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - DEAE diethylaminoethyl - DHQase 3-dehydroquinate dehydratase - DTT dithiothreitol - EPSP 5-enolpyruvylshikimate 3-phosphate - SORase shikimate:NADP+ oxidoreductase  相似文献   

4.
5.
5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase (3-phospho-shikimate 1-carboxyvinyltransferase; EC 2.5.1.19) was purified 1300-fold from etiolated shoots of Sorghum bicolor (L.) Moench. Native polyacrylamide gel electrophoresis revealed three barely separated protein bands staining positive for EPSP synthase activity. The native molecular weight was determined to be 51,000. Enzyme activity was found to be sensitive to metal ions and salts. Apparent Km values of 7 and 8 micromolar were determined for the substrates shikimate-3-phosphate and phosphoenolpyruvate (PEP), respectively. The herbicide glyphosate was found to inhibit the enzyme competitively with respect to PEP (Ki = 0.16 micromolar). Characterization studies support the conclusion of a high degree of similarity between EPSP synthase from S. bicolor, a monocot, and the enzyme from dicots. A similarity to bacterial EPSP synthase is also discussed. Three EPSP synthase isozymes (I, II, III) were elucidated in crude homogenates of S. bicolor shoots by high performance liquid chromatography. The major isozymes, II and III, were separated and partially characterized. No significant differences in pH activity profiles and glyphosate sensitivity were found. This report of isozymes of EPSP synthase from S. bicolor is consistent with other reports for shikimate pathway enzymes, including EPSP synthase.  相似文献   

6.
7.
Trehalose is a non-reducing disaccharide of glucose that confers tolerance against abiotic stresses in many diverse organisms, including higher plants. It was previously reported that overexpression of the yeast trehalose-6-phosphate synthase gene in tomato results in improved tolerance against abiotic stresses. However, these transgenic tomato plants had stunted growth and pleiotropic changes in appearance. In this study, transgenic tomato plants were generated by the introduction of a gene encoding a bifunctional fusion of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes from Escherichia coli under the control of the CaMV35S promoter. Transgenic plants accumulated higher levels of trehalose in their leaves and exhibited enhanced drought and salt tolerance and photosynthetic rates under salt stress conditions than wild-type plants. All of the transgenic plants had normal growth patterns and appearances. Therefore, the system described in this study can be used for practical application of the gene in crop improvement.  相似文献   

8.
9.
In C4 sugarcane (Saccharum spp. hybrids), photosynthetic activity has been shown to be regulated by the demand for carbon from sink tissues. There is evidence, from other plant species, that sink-limitation of photosynthesis is facilitated by sugar-signaling mechanisms in the leaf that affect photosynthesis through regulation of gene expression. In this work, we manipulated leaf sugar levels by cold-girdling leaves (5°C) for 80 h to examine the mechanisms whereby leaf sugar accumulation affects photosynthetic activity and assess whether signaling mechanisms reported for other species operate in sugarcane. During this time, sucrose and hexose concentrations above the girdle increased by 77% and 81%, respectively. Conversely, leaf photosynthetic activity (A) and electron transport rates (ETR) decreased by 66% and 54%, respectively. Quantitative expression profiling by means of an Affymetrix GeneChip Sugarcane Genome Array was used to identify genes responsive to cold-girdling (56 h). A number of genes (74) involved in primary and secondary metabolic pathways were identified as being differentially expressed. Decreased expression of genes related to photosynthesis and increased expression of genes involved in assimilate partitioning, cell wall synthesis, phosphate metabolism and stress were observed. Furthermore four probe sets homologous to trehalose 6-phosphate phosphatase (TPP; EC 5.3.1.1) and trehalose 6-phosphate synthase (TPS; EC 2.4.1.15) were up- and down-regulated, respectively, indicating a possible role for trehalose 6-phosphate (T6P) as a putative sugar-sensor in sugarcane leaves.  相似文献   

10.
The pathways of glycerophospholipid syntheses in adult Brugia pahangi and Brugia patei were examined by radioisotopic incorporation and demonstration of the enzymatic steps. Radiolabelling studies showed that l-U-14C-glycerol-3-phosphate was rapidly incorporated into glycerophospholipids of B. pahangi and B. patei, respectively, with the label distributed in phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG) and cardiolipin (CL) fractions. Crude extracts of these worms were found to contain significant activities of sn-glycerol-3-phosphate acyl-transferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), choline phosphotransferase (EC 2.7.8.2), ethanolamine phosphotransferase (EC 2.7.8.1), PE methyltransferase (EC 2.1.1.17), PS decarboxylase (EC 4.1.1.65), phosphatidylglycerolphosphate synthetase (EC 2.7.8.5), phosphatidylinositol synthetase (EC 2.7.8.11), and base exchange enzymes of ethanolamine, serine and inositol. These findings suggest that filarial worms can synthesize PC by two pathways, PE by three pathways, and PI by two pathways and fabricate PS, PG and CL.  相似文献   

11.
Pathways of carbohydrate metabolism in the adults of Schistosomatium douthitti: were investigated. Histochemical reactions for adenosinetriphosphatase (EC 3.6.1.3) glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphogluconate dehydrogenase (EC 1.1.1.43), glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), lactate dehydrogenase (EC 1.1.1.27, 1.1.2.3) isocitrate dehydrogenase (EC 1.1.1.41), succinate dehydrogenase (EC 1.3.99.1), malate dehydrogenase (EC 1.1.1.37), cytochrome oxidase (EC 1.9.3.1), and adenosine triphosphatase (EC 3.6.1.3) were found in the adult worms. Glycogen deposits occurred in the parenchyma.Low oxygen tension immobilized the worms. Tartar emetic, sodium cyanide reduced adult motility in vitro. Manometric experiments demonstrated a respiratory quotient of approximately one. Oxygen uptake was completely inhibited by tartar emetic and partially inhibited by sodium fluoracetate and sodium cyanide. Inhibition by sodium fluoroacetate was partially counteracted by citric acid in the medium.Adults demonstrated an oxygen debt following anaerobic incubation. A maximum of 52% of the glucose consumed under aerobic conditions was excreted as lactic acid. Under anaerobic conditions the amount of lactic acid excreted increased. Acids other than lactic acid were also released. Results indicate that although glycolysis is the major pathway, two additional aerobic pathways also exist, one which is cyanide sensitive and the other cyanide insensitive.  相似文献   

12.
13.
Sugar and soluble solids content and invertase (EC 3.2.1.26), sucrose synthase (EC 2.4.1.13), and sucrose phosphate synthase (EC 2.4.1.14) enzyme activities were measured throughout fruit development in tomato (Lycopersicon esculentum Mill.) and the green fruited species Lycopersicon peruvianum. Fruit of L. peruvianum accumulated predominantly sucrose, in contrast with hexose accumulation, which is characteristic of L. esculentum. The percentage of soluble solids in ripe L. peruvianum fruit was more than twice that present in L. esculentum and attributed primarily to the high level of sucrose accumulated in L. peruvianum. Low levels of invertase and sucrose synthase activity were associated with the period of significant sucrose accumulation and storage in L. peruvianum. Increased sucrose phosphate synthase activity was observed during the latter stages of fruit development in sucrose-accumulating fruit but was not coincident with maximum rates of sucrose accumulation.  相似文献   

14.
Of the eight intermediates associated with the two pathways of UDP-d-glucuronic acid biosynthesis found in plants, only d-glucuronic acid inhibited myo-inositol 1-phosphate synthase (EC 5.5.1.4), formerly referred to as d-glucose 6-phosphate cycloaldolase. Inhibition was competitive. An attempt to demonstrate over-all reversibility of the synthase indicated that it was less than 5% reversible, if at all.  相似文献   

15.
Potato (Solanum tuberosum L.) tubers contain two isoenzymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15), the enzyme that catalyzes the first step of aromatic amino acid biosynthesis. One of the isoenzymes is specifically activated by Mn2+, and the other requires Co2+, Mg2+, or another divalent cation for activity. Monospecific polyclonal antibodies against the Mn2+-activated isoenzyme do not cross-react with the other isoenzyme. Wounding of potato tubers induces the Mn2+-activated form but not the other. We conclude that two different genes encode two different isoenzymes that catalyze the first step in the shikimate pathway.  相似文献   

16.
17.
myo-Inositol 1-phosphate synthase (EC 5.5.1.4) and 1l-myo-inositol 1-phosphatase (EC 3.1.3.25) were isolated and partially purified from lactating rat mammary gland. The synthase had an apparent molecular weight of 290,000 as determined by gel filtration; its pH optimum was 7.2, and the Km for glucose 6-phosphate was 0.5 mm. No other compound could act as a substrate, but the synthase was inhibited 100% by d-gluconic acid 6-phosphate, 54% by d-fructose 6-phosphate, 31.8% by d-galactose 6-phosphate, and 29.6% by d-mannose 6-phosphate each at 5mm. Activity was stimulated 2-fold by the addition of 1 mm NAD+ and 40% by 14 mm ammonium ions, whereas it was inhibited by 30% in the presence of 1 mm NADH and by 93.6% when incubated with 1 mmp-mercuribenzoate. Reagents which interfere with Schiff-base formation, pyridoxal 5′-phosphate and trinitrobenzenesulfonate, inhibited the enzyme, but EDTA was without effect.The 1l-myo-inositol 1-phosphatase from rat mammary tissue appears to exist in a native tetrameric form of 210,000 as determined by gel filtration which, upon heating at 70 °C for 15 min, is converted into a stable monomer of approximately 52,000. Mg2+ (1.5 mm) was an absolute requirement for activity though Mn2+ gave 17% of the activity provided by Mg2+. Sodium, potassium, or ammonium ions were stimulatory, but lithium ions were strongly inhibitory. 1l-myo-Inositol 1-phosphatase specifically cleaved 1l-myo-inositol 1-phosphate and was 60% as active toward l-α-glycerol phosphate with only minor activity toward other phosphorylated compounds. The pH optimum was 8.0 and the Km for 1l-myo-inositol 1-phosphate was 0.8 mm.  相似文献   

18.
Two isozymes of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) designated DS-Mn and DS-Co were separated from seedlings of Vigna radiata [L.] Wilczek by DEAE-cellulose column chromatography. DS-Mn was activated 2.6-fold by 0.4 millimolar manganese, had an activity optimum of 7.0, and was substrate inhibited by erythrose-4-phosphate (E4P) concentrations in excess of 0.5 millimolar. In contrast, DS-Co had an activity optimum at pH 8.8, required E4P concentrations of at least 4 millimolar to approach saturation, and exhibited an absolute requirement for divalent cation (cobalt being the best). Regulatory properties of the two isozymes differed dramatically. The activity of DS-Mn was activated by chorismate (noncompetitively against E4P and competitively against phosphoenolpyruvate), and was inhibited by prephenate and l-arogenate (competitively against E4P and noncompetitively against phosphoenolpyruvate in both cases). Under standard assay conditions, l-arogenate inhibited the activity of DS-Mn 50% at a concentration of 155 micromolar and was at least 3 times more potent than prephenate on a molar basis. Weak inhibition of DS-Mn by l-tryptophan was also observed, the magnitude of inhibition increasing with decreasing pH. The pattern of allosteric control found for DS-Mn is consistent with the operation of a control mechanism of sequential feedback inhibition governing overall pathway flux. DS-Co was not subject to allosteric control by any of the molecules affecting DS-Mn. However, DS-Co was inhibited by caffeate (3,4-dihydroxycinnamate), noncompetitively with respect to either substrate. The striking parallels between the isozyme pairs of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase and chorismate mutase are noted—one isozyme in each case being tightly regulated, the other being essentially unregulated.  相似文献   

19.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

20.
Dipetalogaster maximus and Triatoma infestans are hematophagous insects, vectors of Chagas' disease. After the last molt of their metamorphosis, from fifth instar nymph to adult, they acquire wings and the ability to fly, which is important for their dispersal. Some biochemical changes accompanying this last stage have been studied by determining activity of hexokinase (EC 2.7.1.1), fructose-6-phosphate kinase (EC 2.7.1.11), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), glutamate dehydrogenase (EC 1.4.1.4), aspartate aminotransferase (EC 2.6.1.1), malate dehydrogenase (EC 1.1.1.37) and glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) in thoracic muscle extracts of fifth instar nymphs and adults. Activity of all the enzymes, expressed in U per mg protein, was significantly higher in muscles of adults than of nymphs, except that of aspartate aminotransferase, had lower activity in adults of T. infestans. The increase of glycerol-3-phosphate dehydrogenase activity was particularly striking (30-fold), while the increase in glucose-6-phosphate dehydrogenase activity was of a lesser magnitude than those observed for other enzymes. Comparative ultrastructural studies of thoracic muscles showed that in adult preparations mitochondria were more numerous and larger in size, and presented more cristae than in muscles of fifth instar nymphs. The biochemical changes detected appear to be the expression of the adaptation of adult muscles for flight activity. Thus, adult muscles would have higher glycolytic and respiratory capacity than those of fifth instar nymphs. The operation of systems transferring hydrogen into mitochondria, especially that of the glycerophosphate shuttle, may be greatly increased in adult muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号