首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: The contribution of NMDA receptors to regulation of serotonin (5-HT) release was assessed by in vivo microdialysis in freely behaving rats. During infusion of NMDA (30, 100, and 300 µ M ) into the dorsal raphe nucleus (DRN), 5-HT was increased by ∼25, 100, and 280%, respectively. Competitive and noncompetitive NMDA-receptor antagonists blocked this effect on DRN 5-HT. Infusion of NMDA (300 µ M ) into the DRN also produced an 80% increase in extracellular 5-HT in the nucleus accumbens. During infusion of NMDA (100 and 300 µ M ) into the median raphe nucleus (MRN), 5-HT was increased by ∼15 and 80%, respectively. NMDA-receptor antagonists blocked this effect on MRN 5-HT. Infusion of NMDA into the MRN also produced a significant increase in hippocampal 5-HT. In contrast, infusion of NMDA into the nucleus accumbens, frontal cortex, or hippocampus produced small decreases in 5-HT in these forebrain sites. Taken together, these results suggest that NMDA receptors in the midbrain raphe, but not the forebrain, can have an excitatory influence on 5-HT neurons and, thus, produce increased 5-HT release in the forebrain. Furthermore, in comparison with the MRN, DRN 5-HT neurons were more sensitive to the excitatory effect of NMDA.  相似文献   

2.
The effects of microinfusingl-glutamate, serotonin (5-HT), (±)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH DPAT; a 5-HT1A agonist), and muscimol (a GABAA agonist) into the dorsal raphe nucleus on the extracellular levels of 5-HT, dopamine (DA) and their metabolites in the nucleus accumbens were studied in unanesthetized, freely moving, adult male Wistar rats, using the technique of microdialysis coupled with small-bore HPLC. Administration of 0.75 gl-glutamate produced a 25–50% increase (P<0.05) in the extracellular levels of both 5-HT and DA. On the other hand, infusion of 8-OH DPAT and, to a lesser extent, 5-HT produced a significant (P<0.05) decrease in the extracellular levels of both 5-HT and DA. Muscimol (0.25 or 0.50 g) had little effect on the extracellular concentrations of 5-HT or DA following its administration. In general, the extracellular levels of the major metabolites of 5-HT and DA in the nucleus accumbens were not altered by microinfusion of any of the agents. The data indicate that (a) the 5-HT neurons projecting to the nucleus accumbens from the dorsal raphe nucleus can be activated by excitatory amino acid receptors and inhibited by stimulation of 5-HT1A autoreceptors, and (b) the dorsal raphe nucleus 5-HT neuronal system may regulate the ventral tegmental area DA projection to the nucleus accumbens.Special issue dedicated to Dr. Morris H. Aprison  相似文献   

3.
Abstract: Serotonergic neurons of the dorsal and median raphe nuclei are morphologically dissimilar. Recent results challenge previous evidence indicating a greater inhibition of dorsal raphe neurons after 5-hydroxytryptamine1A (5-HT1A) autoreceptor activation. As both nuclei innervate different forebrain territories, this issue is critical to understanding the changes in brain function induced by anxiolytic and antidepressant drugs. Using microdialysis, we examined the modifications of 5-HT release induced by the selective 5-HT1A agonist ipsapirone in both neuronal pathways. Maximal and minimal basal 5-HT values (in the presence of 1 µ M citalopram) were 45.0 ± 4.8 fmol/fraction in the median raphe nucleus and 8.4 ± 0.4 fmol/fraction in the dorsal hippocampus. Ipsapirone (0.3, 3, and 10 mg/kg s.c.) reduced dose-dependently 5-HT in the two raphe nuclei and four forebrain areas. Maximal reductions (to ∼25% of predrug values) were observed in cortex and striatum and in median raphe nucleus. The effects were more moderate in dorsal and ventral hippocampus (to 66 and 50% of baseline, respectively). These results are consistent with a higher sensitivity of dorsal raphe neurons to 5-HT1A autoreceptor activation. Yet the differential reduction of 5-HT release in the median raphe nucleus and hippocampus suggests the presence of complex mechanisms of control of 5-HT release in these neurons.  相似文献   

4.
5-Hydroxytryptamine (5-HT; serotonin) turnover rate in dorsal raphe nucleus of the urethane-anesthetized rat was estimated by using the in vivo electrochemical detector to measure the decay of extraneuronal 5-hydroxyindole acetic acid (5-HIAA) after monoamine oxidase inhibition. Carbon paste electrodes were scanned by semiderivative voltammetry and revealed two peaks: one at +0.15 V and the other at +0.25 V. The higher potential peak is composed primarily of the 5-HT metabolite 5-HIAA. After administration of pargyline, 75 mg/kg i.p., this peak declined exponentially. Regression analysis of these data by an exponential decay model yielded the fractional rate constant 0.82 +/- 0.06 h-1 (mean +/- SEM). This rate constant of 5-HIAA disappearance measured by in vivo electrochemistry is identical to the rate constant found by others measuring 5-HIAA disappearance by direct tissue assay methods. In animals not treated with pargyline, tissue 5-HIAA concentrations in the dorsal raphe nucleus were measured by HPLC with electrochemical detection. The average 5-HT turnover rate calculated as the product of the fractional rate constant and steady-state tissue 5-HIAA concentration was 12.6 nmol/g/h. These results demonstrate that electrochemical detection of extraneuronal 5-HIAA combined with monoamine oxidase inhibition can be used to measure neurotransmitter turnover in vivo in a discrete brain region.  相似文献   

5.
Abstract: Recent neurochemical studies of the properties of 5-hydroxytryptamine (5-HT) pathways arising from the dorsal raphe nucleus (DRN) and median raphe nucleus (MRN) have measured extracellular 5-HT in brain regions with reported preferential DRN or MRN 5-HT inputs. Here, we have tested whether electrical stimulation of the DRN and MRN releases 5-HT in rat forebrain regions in a pattern that fits the reported distribution of DRN/MRN pathways. The effect on extracellular 5-HT of electrical stimulation (5 Hz, 300 µA, 20 min) of the DRN, and then MRN, was determined in six regions of the anaesthetised rat. Stimulation of the DRN evoked a short-lasting but clear-cut release of 5-HT (+70–100%) in regions (frontal cortex, dorsal striatum, globus pallidus, and ventral hippocampus) reported to receive a 5-HT projection from the DRN. Regions receiving an MRN innervation (dorsal hippocampus, medial septum, and ventral hippocampus) released 5-HT (+70–100%) in response to MRN stimulation. Regions reported to receive a preferential DRN innervation (frontal cortex, dorsal striatum, and globus pallidus) did not respond to MRN stimulation. Of two regions (dorsal hippocampus and medial septum) reported to receive a preferential MRN innervation, one did not respond to DRN stimulation (dorsal hippocampus) although the other (medial septum) did. In summary, electrical stimulation of the DRN and MRN released 5-HT in a regionally specific pattern. With the exception of one region (medial septum), this pattern of release bears a strong relationship to the distribution of 5-HT projections from the DRN and MRN reported by anatomical studies. The combination of raphe stimulation with microdialysis may be a useful way to study the in vivo neurochemistry of DRN/MRN 5-HT pathways.  相似文献   

6.
H Echizen  C R Freed 《Life sciences》1984,34(16):1581-1589
The effect of drug-induced hypertension on neurotransmitter release from dorsal raphe nucleus was studied by in vivo electrochemical electrodes in urethane anesthetized male Sprague-Dawley rats. Carbon paste electrodes were stereotaxically placed into dorsal raphe nucleus and neurotransmitter release was estimated electrochemically. Blood pressure was recorded from a femoral arterial catheter. Voltammograms taken from dorsal raphe nucleus showed two distinct peaks corresponding to norepinephrine and 5-hydroxyindole acetic acid (5-HIAA). After basal blood pressure and neurotransmitter release were monitored for 30 min, blood pressure was raised 50 mmHg by continuous intravenous infusion of L-phenylephrine hydrochloride. Drug infusion was discontinued after 50 min, but blood pressure and neurotransmitter release were measured for an additional 2 hr. Results showed that the 5-HIAA response increased immediately after the initiation of hypertension and remained elevated. By contrast, norepinephrine release initially decreased, then returned to the basal level and then rose in parallel with 5-HIAA to a level above baseline as drug-induced hypertension was discontinued. The same experimental protocol was used to study the electrochemical response to drug-induced hypotension. Blood pressure was lowered 20 mmHg by intravenous infusion of sodium nitroprusside dihydrate. During hypotension, no changes were seen in either transmitter response. However, as reflex hypertension appeared following discontinuation of the sodium nitroprusside infusion, the 5-HIAA response increased and the norepinephrine response decreased. These results show that drug-induced and reflex hypertension reduce norepinephrine release and increase serotonin turnover in dorsal raphe nucleus in anesthetized normotensive rats. These reciprocal changes appear to be a part of the neural response to hypertension.  相似文献   

7.
It is now a recognized principle that various neuropeptides are neuronally co-localized with biogenic amine or aminoacid neurotransmitters. In the rat CNS it has previously been shown that TRH is co-localized with 5-HT (and also with substance P) in cell bodies of the posterior raphe that project to the spinal cord. Although TRH cell bodies are known to be widely distributed throughout the forebrain there is no other known co-localization with 5-HT. In this study we further specify the anatomical relationship of TRH with 5-HT by use of surgical and neurotoxic lesioning with reference to limbic forebrain regions wherein TRH is greatly increased following seizures. In groups of rats, the fimbria-fornix was lesioned alone, or combined with a lesion of the dorsal perforant path or the ventral perforant path. There was a sham lesioned control group. Additional groups were lesioned with 5, 7 dihydroxytryptamine, 100 g i.v.t., 45 min. after i.p. desipramine, 25 mg/kg. All rats were sacrificed three weeks after lesions. Indoleamines were determined by HPLC in left anterior cortex, left pyriform/olfactory cortex, left dorsal hippocampus and left ventral hippocampus. TRH was determined by specific RIA in the corresponding right brain regions. The modal n was 7 rats. The surgical lesions reduced 5-HT to below the detection limit in dorsal hippocampus in all three groups, and to 31–52% of control in all the ventral hippocampus groups. 5-HIAA was reduced to 19–37% of control in dorsal and to 30–51% of control in ventral hippocampus. TRH was reduced to 44–61% of control in dorsal hippocampus and to 48–53% of control in ventral hippocampus. As was repeatedly observed in our previous reports all TRH levels in ventral hippocampus were higher than in dorsal hippocampus. The 5, 7 dihydroxytryptamine treatment nearly eliminated the indoleamines from all the forebrain regions examined while TRH levels were unchanged. These results can be explained by our previous data showing that immunoreactive TRH is intrinsic and localized to the vicinity of both CA and dentate granule cells of the hippocampus, but about half of hippocampal TRH enters via fibers of the fimbria-fornix. The perforant path appears to contribute no TRH to hippocampus, but, results with the combined lesion groups showed some reduction of 5-HIAA in ventral hippocampus as is expected from the known perforant path contribution of 5-HT. Since the neurotoxic lesion had no effect on TRH, the 5-HT pathway through the fimbria-fornix is probably anatomically separate from a parallel TRH pathway there. This study shows that co-localization of TRH with 5-HT is very unlikely in four specific limbic forebrain regions.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

8.
E H Lee 《Life sciences》1987,40(7):635-642
Effects of apomorphine (APO) and clonidine (CLON) on the mesostriatal and mesolimbic serotonergic systems were examined in the present study. Both drugs selectively elevated serotonin (5-HT) concentrations in the dorsal raphe and the striatum without significantly altering 5-HT measures in the median raphe and the hippocampus. Apomorphine also increased tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) levels in the dorsal raphe and 5-HIAA level in the striatum. Clonidine did not markedly alter tryptophan and 5-HIAA measures, while it decreased 5-HT turnover rate in both region, as indicated by the ratio of 5-HIAA/5-HT levels. Co-administration of APO and CLON, at doses of each drug exerted maximum effects on 5-HT alone, produced an additive effect on 5-HT in the dorsal raphe, while their effects on 5-HT and 5-HIAA in the striatum were counteracting each other. Effects of APO on 5-HT and 5-HIAA were attributed to the elevation of 5-HT precursor tryptophan, while effects of CLON on 5-HT and 5-HIAA were due to a decreased rate of 5-HT turnover. Therefore, the present results support the hypothesis that the additive effects of APO and CLON on dorsal raphe 5-HT are mediated through different receptors and neuropharmacological mechanisms.  相似文献   

9.
Abstract: Extracellular 5-hydroxytryptamine (5-HT) in the median raphe and dorsal hippocampus was measured using in vivo microdialysis. Administration of 60 m M K+ through the probe into the median raphe region significantly increased 5-HT output from the median raphe and the right dorsal hippocampus. Local infusion of 10 µ M tetrodotoxin into the median raphe region substantially decreased 5-HT in the median raphe and left and right dorsal hippocampus. Systemic administration (0.3 mg/kg s.c.) of 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) decreased the 5-HT levels in the dialysates from both the median raphe region and dorsal hippocampus. Administration of 30 n M 8-OH-DPAT through the dialysis probe into the median raphe region decreased 5-HT output from the median raphe and dorsal hippocampus significantly, whereas at concentrations from 60 n M to 10 µ M , no significant effects were found in either region. With 100 µ M 8-OH-DPAT, a significant increase was seen in the median raphe region, but not in dorsal hippocampus. Similar findings were obtained following microinjections of different doses of the compound into the median raphe region. The results of this study indicate that the somatodendritic release of 5-HT is impulse flow-dependent. Moreover, the decrease of 5-HT in the median raphe region by low nanomolar concentrations of 8-OH-DPAT supports the notion that somatodendritic 5-HT release is subject to a local negative feedback mechanism through 5-HT1A autoreceptors.  相似文献   

10.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

11.
The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.  相似文献   

12.
The present work studies the existence of monoamine oxidase (MAO) activity in serotonergic endings present in rat major cerebral arteries. Enzymatic activity was appraised in vivo by serotonin (5-HT) accumulation or 5-hydroxyindole acetic acid (5-HIAA) disappearance with time after systemic administration of MAO inhibitors. Pargyline (75 mg/Kg, ip) brought about significant 5-HT increase and 5-HIAA decrease in major cerebral arteries 30 and 60 min after its administration. Clorgyline (75 mg/Kg, ip) also induced 5-HT enhancement and 5-HIAA decline in these arteries 30 and 60 min after its injection. However, treatment with deprenyl (75 mg/Kg, ip) only evoked a significant 5-HT increase at 60 min. When either clorgyline (5 mg/Kg, ip) or deprenyl (5 mg/Kg, ip) were administered 5-HT and 5-HIAA levels remained unaffected. Two weeks after performing electrolytical lesion of dorsal raphe nucleus and 60 min after clorgyline (75 mg/Kg, ip) injection 5-HT and 5-HIAA levels appeared significantly reduced in cerebral arteries and striatum when compared to sham-lesioned controls. These results suggest that MAO-A isoform acting on endogenous 5-HT is present in rat major cerebral arteries and is located in nerve endings of fibers arising from dorsal raphe nucleus.  相似文献   

13.
Previous studies have indicated that peripheral administration of interleukin-6 (IL-6) increases brain concentrations of tryptophan and 5-hydroxyindoleacetic acid (5-HIAA), the major catabolite of serotonin (5-HT). To determine whether these changes were related to increased synaptic release of 5-HT, we studied the responses to peripheral administration of IL-6 by in vivo microdialysis and in vivo amperometry. Intraperitoneal injection of recombinant IL-6 resulted in an elevation of microdialysate concentrations of 5-HT in the rat striatum. Also, amperometric measurements indicated that i.p. IL-6 enhanced the 5-HT-like signal obtained from the striatum following electrical stimulation of the dorsal raphe nucleus. These results indicate that the increases in brain concentrations of 5-HIAA observed in earlier studies indeed reflect increased synaptic release of 5-HT.  相似文献   

14.
Abstract: 5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HText) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum > frontal cortex > dorsal hippocampus). Paroxetine (3 mg/kg s.c.) decreased forebrain 5-HText during local blockade of uptake. This reduction was greater in striatum and frontal cortex than in dorsal hippocampus and was counteracted by the local and systemic administration of WAY-100635. The perfusion of 50 µmol/L citalopram in the dorsal or median raphe nucleus reduced 5-HText in frontal cortex or dorsal hippocampus to 40 and 65% of baseline, respectively. The reduction of cortical 5-HText induced by perfusion of citalopram in midbrain raphe was fully reversed by WAY-100635 (1 mg/kg s.c.). Together, these data suggest that dorsal raphe neurons projecting to striatum and frontal cortex are more sensitive to self-inhibition mediated by 5-HT1A autoreceptors than median raphe neurons projecting to the hippocampus. Therefore, potentiation by 5-HT1A antagonists occurs preferentially in forebrain areas innervated by serotonergic neurons of the dorsal raphe nucleus.  相似文献   

15.
Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.  相似文献   

16.
Although the involvement of both endogenous opioid and serotonergic systems in modulation of pain and emotion was suggested, the neurochemical interaction between these systems in the brain has not previously been studied directly. Herein, the effects of the local application of serotonin (5-HT) and fluoxetine (a 5-HT reuptake inhibitor) on extracellular levels of beta-endorphin in the arcuate nucleus and nucleus accumbens were assessed in freely moving rats using in vivo microdialysis. The mean basal concentrations of beta-endorphin in dialysates obtained from the arcuate nucleus and nucleus accumbens were 259.9 and 143.3 pM, respectively. Specific lesion of the serotonergic system by 5,7-dihydroxytryptamine (5,7-DHT) caused a significant decrease in these dialysate beta-endorphin levels. When 5-HT (0.25-5 microM) was added to the perfusion solution, the levels of beta-endorphin in the dialysate from the arcuate nucleus increased (186-296% of baseline), in a concentration-dependent manner. In the nucleus accumbens, 0.5 and 2 microM 5-HT in the perfusion fluid did not affect the levels of beta-endorphin in the dialysate, whereas 5 and 10 microM 5-HT caused an increase of approximately 190% of baseline. When fluoxetine (250 microM) was present in the perfusing solution, the levels of beta-endorphin in the dialysates from the arcuate nucleus and nucleus accumbens increased two- to threefold. This effect was not obtained in the 5,7-DHT-lesioned rats. Thus, 5-HT, either endogenously or exogenously delivered, appears to facilitate the release of beta-endorphin in the arcuate nucleus and nucleus accumbens. This indication of an interaction between serotonergic and endorphinic systems may be relevant for assessing pain and mood disorder circuits and the mode of action of antidepressant drugs.  相似文献   

17.
The effects of lesions of the median raphe or dorsal raphe nuclei on ovarian cycle were studied in rats. Lesions involving raphe nuclei decreased forebrain 5-HT and 5-hydroxyindole acid (5-HIAA) concentrations. Rats with lesions of the raphe showed prolonged estrous phase as well as an increase in both the eosinophilic index and karyopycnotic index of the vaginal smears. Histological examinations revealed that lesions of both the dorsal and median raphe produced marked increase in the number of maturing and mature follicles as well as an increase in corpora lutea. The increase in uterine weight was also observed. Present results indicate that lesions of the ascending 5-HT neurons stimulate ovulation and cause an increase in the estrogenic activity. Thus, the 5-HT neurons of the raphe nuclei seem to inhibit ovulation probably due to inhibiting of the hypothalamic releasing hormones.  相似文献   

18.
Neurotoxin-induced lesion of the serotonergic raphe-hippocampal pathway produced about a 50% increase in the density of a nM affinity alpha-adrenergic binding site for (3H)WB-4101 in rat hippocampus 18 days postlesion without altering the specific binding of (3H)5-HT to serotonergic receptors. The chronic i.c.v. infusion of serotonin by minipump started at the appropriate time averted or reverted the effect. The dynamics of noradrenergic neurotransmission in the hippocampus was not impaired by lesion of the median raphe nucleus as determined by the uptake and turnover of noradrenaline as well as its release - as reflected by the normetanephrine concentration. In addition, neurotoxin-induced lesion of the dorsal noradrenergic bundle failed to alter either the Bmax or the Kd of (3H)WB-4101 binding to the nM site. Kainic acid-induced destruction of perikarya depressed the nM (3H)WB-4101 binding sites by 60% and completely prevented the up regulation caused by lesion of the median raphe nucleus. Thus, the supersensitivity-like response of the adrenoceptors to the lack of serotonin appears to be localized on kainate-sensitive cells within the hippocampus.  相似文献   

19.
Monoamine concentrations were low in the rostral area of the nucleus accumbens. Their distributions were not identical. Differences were observed in the medial area. DA concentrations were high in both medial and caudal areas. Noradrenaline (NA) and serotonin (5-HT) concentrations were considerably lower than the dopamine (DA) concentration. The NA concentration was highest in the caudal area of the nucleus accumbens and the (5-HT) concentration was highest in the ventrocaudal area. There was a rostrocaudal decrease in the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA and 5-hydroxyindole-3-acetic acid (5-HIAA)/5-HT ratios. Uptake of [3H]DA and [14C]choline was lowest in the rostral area. The K+-stimulated release of [14C]acetylcholine (ACh) was also lowest rostrally, but there was no rostrocaudal difference in the K+-stimulated release of [3H]DA. These results provide further evidence of the heterogeneity of the nucleus accumbens.  相似文献   

20.
Three serotonin (5-HT) neurotoxins,p-chlorophenylalanine (PCPA, 125 and 250 mg/kg, i.p.),p-chloroamphetamine (PCA, 10 mg/kg, i.p.) and 5,7-dihydroxytryptamine (5,7-DHT, 200 µg/rat, i.c.v.) were used to examine whether depletion of central 5-HT has an effect on central dopaminergic (DA) neuronal activities or on prolactin (PRL) secretion. Adult ovariectomized Sprague-Dawley rats primed with estrogen (polyestradiol phosphate, 0.1 mg/rat, s.c.) were treated with one of three neurotoxins and then decapitated in the morning after 3–7 days. Blood sample and brain tissues were collected. The acute effect of PCA (from 30 to 180 min) was also determined. The concentrations of 5-HT, DA and their metabolites, 5-hydroxyindoleacetic acid and 3,4-dihydroxyphenylacetic acid, in the median eminence, striatum and nucleus accumbens were determined by HPLC-electrochemical detection. All three toxins significantly depleted central 5-HT stores by 11–20%. Except for PCPA, neither PCA nor 5,7-DHT had any significant effect on basal DA neuronal activities or PRL secretion. PCA also exhibited an acute effect on the release and reuptake of 5-HT and DA. In summary, depletion of central 5-HT stores to a significant extent for 3–7 days did not seem to affect basal DA neuronal activity and PRL secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号