首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue structure and respiration (Rs) of stems were analyzed in Betula pendula grown throughout the growing season in either filtered air (control) or 90/40 nl O3 l-1 (day/night). Both regimes were split into high and low nutrient supply. High nutrition increased tissue and cell sizes within the stem xylem, phloem and periderm, whereas ozone (O3) tended to reduce tissue widths, inhibiting in particular the cambial activity of xylem growth in low-fertilized, O3-exposed plants (O3/LF). Callose deposition was enhanced in the phloem sieve plates and tannins tended to condense in vacuoles of parenchyma cells under O3 stress. Decline occurred close to lenticels, related to O3 impact during shoot differentiation and was probably exacerbated by the limited assimilate translocation. Radial stem growth ceased 4 weeks earlier than in control plants; however, the area-based Rs was enhanced during intense growth in high-fertilized, O3-exposed plants. Photosynthetic CO2 refixation of stems reached about 50% of their dark respiration rate and the relative growth rate (RGR) did not differ between treatments. At high nutrition, RGR enhanced Rs to levels twice as high as the maintenance level. Unit construction costs appeared to be similar in each treatment, although CO2 release on a volume-increment basis was lowered by 45% in O3/LF plants. This latter effect is ascribed to lowered maintenance demands of a xylem remaining reduced in width by 50%. The high respiratory costs in the carbon balance of O3/LF plants result from an enhanced leaf rather than stem respiration, given the high demand for stress compensation in the foliage.  相似文献   

2.
The purpose of this study was to characterize leaf photosynthetic and stomatal responses of wheat (Triticum aestivum L.) plants grown under two N-nutritional regimes. High- and low-N regimes were imposed on growth-chamber-grown plants by fertilizing with nutrient solutions containing 12 or 1 millimolar nitrogen, respectively. Gas-exchange measurements indicated not only greater photosynthetic capacity of high-N plants under well-watered conditions, but also a greater sensitivity of CO2 exchange rate and leaf conductance to CO2 and leaf water potential compared to low-N plants. Increased sensitivity of high-N plants was associated with greater tissue elasticity, lower values of leaf osmotic pressure and greater aboveground biomass. These N-nutritional-related changes resulted in greater desiccation (lowered relative water content) of high-N plants as leaf water potential fell, and were implicated as being important in causing greater sensitivity of high-N leaf gas exchange to reductions in water potential. Water use efficiency of leaves, calculated as CO2 exchange rate/transpiration, increased from 9.1 to 13 millimoles per mole and 7.9 to 9.1 millimoles per mole for high- and low-N plants as water became limiting. Stomatal oscillations were commonly observed in the low-N treatment at low leaf water potentials and ambient CO2 concentrations, but disappeared as CO2 was lowered and stomata opened.  相似文献   

3.
Summary Injury caused by low O3 concentrations (0, 0.05, 0.075, 0.1 l 1-1) was analyzed in the epidermis and mesophyll of fully developed birch leaves by gas exchange experiments and low-temperature SEM: (I) after leaf formation in O3-free and ozonated air, and (II) after transferring control plants into ozonated air. In control leaves, autumnal senescence also was studied in O3-free air (III). As O3 concentration increased, leaves of (I) stayed reduced in size, but showed increased specific weight and stomatal density. The declining photosynthetic capacity, quantum yield and carboxylation efficiency lowered the light saturation of CO2 uptake and the water-use efficiency (WUE). Carbon gain was less limited by the reduced stomatal conductance than by the declining ability of CO2 fixation in the mesophyll. The changes in gas exchange were related to the O3 dose and were mediated by narrowed stomatal pores (overriding the increase in stomatal density) and by progressive collapse of mesophyll cells. The air space in the mesophyll increased, preceded by exudate formation on cell walls. Ozonated leaves, which had developed in O3-free air (II), displayed a similar but more rapid decline than the leaves from (I). In senescent leaves (III), CO2 uptake showed a similar decrease as in leaves with O3 injury but no changes in mesophyll structure and WUE. The nitrogen concentration declined only in senescent leaves in parallel with the rate of CO2 uptake. A thorough understanding of O3 injury and natural senescence requires combined structural and functional analyses of leaves.  相似文献   

4.
The effect of leaf temperature on stomatal conductance and net CO2 uptake was studied on French bean (Phaseolus vulgaris L.) using either dehydrated attached leaves (25–40% water deficit) or cut leaves supplied with 10–4 M abscisic acid (ABA) solution to the transpiration stream. Decreasing leaf temperature caused stomatal opening and increased net CO2 uptake (which was close to zero at around 25° C) to a level identical to that of control leaves (without water deficit) at around 15° C. (i) The ABA effect on stomatal closure was modulated by temperature and, presumably, ABA is at least partly responsible for stomatal closure of french bean submitted to a drought stress. (ii) For leaf temperatures lower than 15° C, net CO2 uptake was no longer limited by water deficit even on very dehydrated leaves. This shows that dehydrated leaves retain a substantial part of their photosynthetic capacity which can be revealed at normal CO2 concentrations when stomata open at low temperature. In contrast to leaves fed with ABA, decreasing the O2 concentration from 21% to 1% O2 did not increase either the rate of net CO2 uptake or the thermal optimum for photosynthesis of dehydrated leaves. The quantum yield of PSII electron flow (measured by F/Fm) was lower in 1% O2 than in 21% O2 for each leaf pretreatment given (non-dehydrated leaves, dehydrated leaves, and leaves fed with ABA) even within a temperature range in which leaf photosynthesis at normal CO2 concentration was the same in these two O2 concentrations. It is concluded that this probably indicates an heterogeneity of photosynthesis, since this difference in quantum yield disappears when using high CO2 concentrations during measurements.Abbreviations and Symbols ABA abscisic acid - Fm maximum chlorophyll fluorescence - F difference between steady-state chlorophyll fluorescence and Fm - PPFD photosynthetic photon flux density We would like to thank Dr. J.-M. Briantais (Laboratoire d'écologie végétale, Orsay, France) for help during fluorescence measurements and Ms. J. Liebert for technical assistance.  相似文献   

5.
The effects of salinity on growth, stomatal conductance, photosynthetic capacity, and carbon isotope discrimination (Δ) of Gossypium hirsutum L. and Phaseolus vulgaris L. were evaluated. Plants were grown at different NaCl concentrations from 10 days old until mature reproductive structures were formed. Plant growth and leaf area development were strongly reduced by salinity, in both cotton and bean. Stomatal conductance also was reduced by salinity. The Δ always declined with increasing external salinity concentration, indicating that stomatal limitation of photosynthesis was increased. In cotton plant dry matter, Δ correlated with the ratio of intercellular to atmospheric CO2 partial pressures (pl/pa) calculated by gas exchange. This correlation was not clear in bean plants, although Δ showed a more pronounced salt induced decline in bean than in cotton. Possible effects of heterogeneity of stomatal aperture and consequent overestimation of pl as determined from gas exchange could explain these results. Significant differences of Δ between leaf and seed material were observed in cotton and bean. This suggests different patterns of carbon allocation between leaves and seeds. The photon yield of O2 evolution determined at rate-limiting photosynthetic photon flux density was insensitive to salinity in both species analyzed. The light- and CO2-saturated rate of CO2 uptake and O2 evolution showed a salt induced decline in both species. Possible explanations of this observation are discussed. O2 hypersensitivity was observed in salt stressed cotton plants. These results clearly demonstrate that the effect of salinity on assimilation rate was mostly due to the reduction of stomatal conductance, and that calculation of pl may be overestimated in salt stressed plants, because of heterogeneity of stomatal aperture over the leaf surface.  相似文献   

6.
 We evaluated the hypothesis that photosynthetic traits differ between leaves produced at the beginning (May) and the end (November–December) of the rainy season in the canopy of a seasonally dry forest in Panama. Leaves produced at the end of the wet season were predicted to have higher photosynthetic capacities and higher water-use efficiencies than leaves produced during the early rainy season. Such seasonal phenotypic differentiation may be adaptive, since leaves produced immediately preceding the dry season are likely to experience greater light availability during their lifetime due to reduced cloud cover during the dry season. We used a construction crane for access to the upper canopy and sampled 1- to 2-month-old leaves marked in monthly censuses for six common tree species with various ecological habits and leaf phenologies. Photosynthetic capacity was quantified as light- and CO2-saturated oxygen evolution rates with a leaf-disk oxygen electrode in the laboratory (O2max) and as light-saturated CO2 assimilation rates of intact leaves under ambient CO2 (Amax). In four species, pre-dry season leaves had significantly higher leaf mass per unit area. In these four species, O2max and Amax per unit area and maximum stomatal conductances were significantly greater in pre-dry season leaves than in early wet season leaves. In two species, Amax for a given stomatal conductance was greater in pre-dry season leaves than in early wet season leaves, suggesting a higher photosynthetic water-use efficiency in the former. Photosynthetic capacity per unit mass was not significantly different between seasons of leaf production in any species. In both early wet season and pre-dry season leaves, mean photosynthetic capacity per unit mass was positively correlated with nitrogen content per unit mass both within and among species. Seasonal phenotypic differentiation observed in canopy tree species is achieved through changes in leaf mass per unit area and increased maximum stomatal conductance rather than by changes in nitrogen allocation patterns. Received: 7 March 1996 / Accepted: 1 August 1996  相似文献   

7.
We investigated the effects of ozone (O3) and/or elevated CO2 concentration ([CO2]) on growth and photosynthetic traits of Fagus crenata seedlings. Two-year-old seedlings were grown in four experimental treatments comprising two O3 treatments (charcoal-filtered air and 100 nmol mol−1 O3; 6 h/day, 3 days/week) in combination with two CO2 treatments (350 and 700 μmol mol−1) for 18 weeks in environmental control growth chambers. The four treatments were designated as control, elevated O3, elevated CO2, and elevated CO2 + O3. Dry matter growth of the seedlings was greater in elevated CO2 + O3 than in elevated CO2. In elevated CO2 + O3, a marked increase of second-flush leaves, considered a compensative response to O3, was observed. The net photosynthetic rate of first-flush leaves in elevated CO2 + O3 increased earlier and was maintained for a longer period of time than that in elevated CO2. Because emergence of second-flush leaves of F. crenata is greatly affected by the amount of assimilation products of first-flush leaves in current year, we consider that an early increase in the net photosynthetic rate of first-flush leaves contributed to the marked increase in second-flush leaf emergence under elevated CO2 + O3. These results imply that we must account for changes in compensative capacity with respect to not only morphological traits but also phenological traits and physiological functions such as photosynthesis when evaluating effects of O3 on F. crenata under elevated [CO2].  相似文献   

8.
Potato plants (Solanum tuberosum L. cv. Bintje) were grown to maturity in open-top chambers under three carbon dioxide (CO2; ambient and 24 h d−1 seasonal mean concentrations of 550 and 680 μmol mol−1) and two ozone levels (O3; ambient and an 8 h d−1 seasonal mean of 50 nmol mol−1). Chlorophyll content, photosynthetic characteristics, and stomatal responses were determined to test the hypothesis that elevated atmospheric CO2 may alleviate the damaging influence of O3 by reducing uptake by the leaves. Elevated O3 had no detectable effect on photosynthetic characteristics, leaf conductance, or chlorophyll content, but did reduce SPAD values for leaf 15, the youngest leaf examined. Elevated CO2 also reduced SPAD values for leaf 15, but not for older leaves; destructive analysis confirmed that chlorophyll content was decreased. Leaf conductance was generally reduced by elevated CO2, and declined with time in the youngest leaves examined, as did assimilation rate (A). A generally increased under elevated CO2, particularly in the older leaves during the latter stages of the season, thereby increasing instantaneous transpiration efficiency. Exposure to elevated CO2 and/or O3 had no detectable effect on dark-adapted fluorescence, although the values decreased with time. Analysis of the relationships between assimilation rate and intercellular CO2 concentration and photosynthetically active photon flux density showed there was initially little treatment effect on CO2-saturated assimilation rates for leaf 15. However, the values for plants grown under 550 μmol mol−1 CO2 were subsequently greater than in the ambient and 680 μmol mol−1 treatments, although the beneficial influence of the former treatment declined sharply towards the end of the season. Light-saturated assimilation was consistently greater under elevated CO2, but decreased with time in all treatments. The values decreased sharply when leaves grown under elevated CO2 were measured under ambient CO2, but increased when leaves grown under ambient CO2 were examined under elevated CO2. The results obtained indicate that, although elevated CO2 initially increased assimilation and growth, these beneficial effects were not necessarily sustained to maturity as a result of photosynthetic acclimation and the induction of earlier senescence.  相似文献   

9.
Effects of short-term ozone (O3) fumigation on radish (Raphanus sativus L.) plants were examined in growth chambers under controlled environment conditions. Plants were exposed to 0 μg/m3 (reference), 80 μg/m3, 160 μg/m3 and 240 μg/m3 O3 concentrations for 7 h per day for five days. Day/night temperature was 21°C/14°C and photoperiod 16 h. Chlorophyll content was evaluated spectrophotometrically. Chromatographic analysis of saccharides was also undertaken. The results showed that elevated O3 inhibited the growth of radish rhizocarps, net assimilation rate and biomass accumulation. O3 induced leaf desiccation, necrosis and premature senescence, but a typical reaction of plants to O3 stress was the rapid regeneration of new leaves. O3 inhibited accumulation of carotenoids more than chlorophylls. The higher photosynthetic pigment content in newly generated radish leaves may be regarded as an adaptation of the photosynthetic system to O3. Leaf saccharide metabolism and incorporation depended on O3 concentration. Rapid regeneration of new leaves and increased content of photosynthetic pigments is the typical reaction of radish plants to O3 stress.  相似文献   

10.
The net rate of CO2 uptake for leaves of Gossypium hirsutum L. was reduced when the plants were grown at low concentrations of NO3-, PO42-, or K+. The water vapor conductance was relatively constant for all nutrient levels, indicating little effect on stomatal response. Although leaves under nutrient stress tended to be lower in chlorophyll and thinner, the ratio of mesophyll surface area to leaf area did not change appreciably. Thus, the reduction in CO2 uptake rate at low nutrient levels was due to a decrease in the CO2 conductance expressed per unit mesophyll cell wall area (gcellCO2). The use of gcellCO2 and nutrient levels expressed per unit of mesophyll cell wall provides a new means of assessing nutrient effects on CO2 uptake of leaves.  相似文献   

11.
Interaction of water supply and N in wheat   总被引:7,自引:1,他引:6       下载免费PDF全文
Morgan JA 《Plant physiology》1984,76(1):112-117
The purpose of this study was to investigate effects of N nutrition and water stress on stomatal behavior and CO2 exchange rate in wheat (Triticum aestivum L. cv Olaf). Wheat plants were grown hydroponically with high (100 milligrams per liter) and low (10 milligrams per liter) N. When plants were 38 days old, a 24-day water stress cycle was begun. A gradual increase in nutrient solution osmotic pressure from 0.03 to 1.95 mega Pascals was achieved by incremental additions of PEG-6,000. Plants in both N treatments adjusted osmotically, although leaf water potential was consistently lower and relative water content greater for low N plants in the first half of the stress cycle. Leaf conductance of high N plants appeared greater than that of low N plants at high water potentials, but showed greater sensitivity to reductions in water potential as indicated by earlier stomatal closure during the stress cycle. The apparent greater stomatal sensitivity of high N plants was associated with a curvilinear relationship between leaf conductance and leaf water potential; low N plants exhibited more of a threshold response. Trends in [CO2]INT throughout the stress cycle indicated nonstomatal effects of water stress on CO2 exchange rate were greater in high N plants. Although estimates of [CO2]INT were generally lower in high N plants, they were relatively insensitive to leaf water potential-induced changes in leaf conductance. In contrast, [CO2]INT of low N plants dropped concomitantly with leaf conductance at low leaf water potentials. Oxygen response of CO2 exchange rate for both treatments was affected less by reductions in water potential than was CO2 exchange rate at 2.5% O2, suggesting that CO2 assimilation capacity of the leaves was affected more by reductions in leaf water potential than were processes related to photorespiration.  相似文献   

12.
Differences in abscisic acid (ABA) accumulation between two olive cultivars were studied by enzyme-linked immunosorbent assay in roots and leaves, leaf water potential (Ψl), stomatal conductance (g s) as well as photosynthetic rate (A) were also determined in well-watered (WW) and water-stressed (WS) plants of two olive cultivars ‘Chemlali’ and ‘Chetoui’. ‘Chemlali’ was able to maintain higher leaf CO2 assimilation rate and leaf stomatal conductance throughout the drought cycle when compared with ‘Chetoui’. Furthermore, leaf water potential of ‘Chemlali’ decreased in lower extent than in Chetoui in response to water deficit. Interestingly, significant differences in water-stress-induced ABA accumulation were observed between the two olive cultivars and reflect the degree of stress experienced. Chemlali, a drought tolerant cultivar, accumulated lower levels of ABA in their leaves to regulate stomatal control in response to water stress compared to the drought sensitive olive cultivar ‘Chetoui’ which accumulated ABA in large amount.  相似文献   

13.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

14.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   

15.
This experiment was conducted to study the effect of high ozone concentrations on two cotton (Gossypium hirsutum L.) cultivars. Two cotton cultivars (Romanos and Allegria) were exposed to control (CF < 4 ppb O3) and 100 ppb O3. Plant exposure to ozone began eight days after emergence and was interrupted one day before removing the leaves, to calculate the leaf area. Plants were exposed to ozone 7 h/day, in closed and controlled-environment chambers, during their illumination with artificial visible light.In comparison to control plants, plants exposed to O3 showed chlorotic and necrotic patches on their leaves, increased stomatal or epidermal cell density and yellowness of cotton fibers. Elevated ozone concentration did not have a significant effect on stomatal width, total leaf thickness and thickness of histological components of leaves. Exposure to ozone concentration reduced non-glandular hair density of main leaf veins, plant height, mainstem internode length, chlorophyll content, net photosynthetic rate, stomatal conductance and length and area of bracts and petals. Elevated ozone treatment reduced the maximum length of staminal tube, anther number, pollen grain germination, leaf area, leaf dry weight, boll number, raw cotton weight, total branch length, dry weight of the mainstem–branches–bracts–carpophylls and of root dry weight. Furthermore, exposure to O3 reduced the seed weight, the lint weight, the yield, the ratio of lint weight to seed weight, the fiber strength, the micronaire, the maturity index and the fiber uniformity index values. This study shows that the exposure to high ozone concentrations mainly affected the rate of photosynthesis, raw cotton weight and strength of cotton fibers.  相似文献   

16.
Tomato (Lycopersicon esculentum Mill. cv. Pearson) plants were grown in growth chambers for 25 days with cadmium (Cd) and then exposed briefly to ozone (O3). Gas exchange, chlorophyll a fluorescence, and pigment composition were analysed in leaves at the end of the treatment to assess the effects of a single pollutant and their combination on photosynthesis. The CO2 assimilation rate was dramatically reduced in plants subjected to the combined treatment, while the single effect of Cd appeared less severe than that of O3. The decline of CO2 photoassimilation found in all O3-exposed plants was attributed to both stomatal and nonstomatal limitations. Tomato plants seemed to detoxify Cd to a great extent, but this resulted in growth suppression. In response to O3 exposure, the plants protected their photosystems by heat dissipation of excess energy via the xanthophyll cycle. Cd combined with O3 affected adversely this cycle resulting in an increase in photosynthetic performance under the same experimental light conditions.  相似文献   

17.
 The beneficial effect of arbuscular mycorrhizal (AM) fungi on plant growth is well known, but the physiological processes involved are still discussed. The purpose of this study was to determine if Glomus mosseae affects the growth of Hevea brasiliensis seedlings and, if it is the case, if it could be associated with variations in leaf CO2 and H2O gas exchange. H. brasiliensis rubber trees were grown for 9 months in a medium containing either propagules of G. mosseae or sterilized inoculum. Plant size, root collar diameter and leaf area, as well as net CO2 assimilation, stomatal conductance (gs) and water-use efficiency of photosynthesis were evaluated during the first 5 stages of growth. At stage 2, a growth depression occurred in the mycorrhizal seedlings coincident with the first AM infections. Then, at stage 5, Glomus mosseae-inoculated plants had moderate colonization (47% of root length) and were taller than control plants with a larger root collar diameter and an enhanced leaf organogenesis. This enhanced growth was accompanied by increased photosynthesis, transpiration, and stomatal conductance. After 9 months, dry weights of shoots and roots of inoculated plants were greater than those of controls by 27 and 17%, respectively. Received: 10 May 1997 / Accepted: 9 September 1997  相似文献   

18.
The purpose of this study was to test the hypothesis that vesicular arbuscular mycorrhizal (VAM) fungi affect net assimilation of CO2 (A) of different-aged citrus leaves independent of mineral nutrition effects of mycorrhizae. Citrus aurantium L., sour orange plants were grown for 6 months in a sandy soil low in phosphorus that was either infested with the VAM fungus, Glomus intraradices Schenck & Smith, or fertilized with additional phosphorus and left nonmycorrhizal (NM). Net CO2 assimilation, stomatal conductance, water use efficiency, and mineral nutrient status for expanding, recently expanded, and mature leaves were evaluated as well as plant size and relative growth rate of leaves. Nutrient status and net gas exchange varied with leaf age. G. intraradices-inoculated plants had well-established colonization (79% of root length) and were comparable in relative growth rate and size at final harvest with NM plants. Leaf mineral concentrations were generally the same for VAM and NM plants except for nitrogen. Although leaf nitrogen was apparently sufficient for high rates of A, VAM plants did have higher nitrogen concentrations than NM at the time of gas exchange measurements. G. intraradices had no effect on A, stomatal conductance, or water use efficiency, irrespective of leaf age. These results show that well-established VAM colonization does not affect net gas exchange of citrus plants that are comparable in size, growth rate, and nutritional status with NM plants.  相似文献   

19.
Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 μmol photons m−2 s−1). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO2 (35 μM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO2-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号