共查询到20条相似文献,搜索用时 0 毫秒
1.
Nishant KT Rao MR 《BioEssays : news and reviews in molecular, cellular and developmental biology》2006,28(1):45-56
Meiotic recombination occurs preferentially at certain regions called hot spots and is important for generating genetic diversity and proper segregation of chromosomes during meiosis. Hot spots have been characterized most extensively in yeast, mice and humans. The development of methods based on sperm typing and population genetics has facilitated rapid and high-resolution mapping of hot spots in mice and humans in recent years. With increasing information becoming available on meiotic recombination in different species, it is now possible to compare several molecular features associated with hot-spot loci. Further, there have been advances in our knowledge of the factors influencing hot-spot activity and the role that they play in structuring the genome into haplotype blocks. We review the molecular features associated with hot spots in terms of their properties and mechanisms underlying their function and distribution. A large number of these features seem to be shared among hot spots from different species suggesting common mechanisms for their formation and function. 相似文献
2.
RecQ helicases are found in organisms as diverse as bacteria, fungi, and mammals. These proteins promote genome stability, and mutations affecting human RecQ proteins underlie premature aging and cancer predisposition syndromes, including Bloom syndrome, caused by mutations affecting the BLM protein. In this study we show that mutants lacking the Rqh1 protein of the fission yeast Schizosaccharomyces pombe, a RecQ and BLM homolog, have substantially reduced meiotic recombination, both gene conversions and crossovers. The relative proportion of gene conversions having associated crossovers is unchanged from that in wild type. In rqh1 mutants, meiotic DNA double-strand breaks are formed and disappear with wild-type frequency and kinetics, and spore viability is only moderately reduced. Genetic analyses and the wild-type frequency of both intersister and interhomolog joint molecules argue against these phenotypes being explained by an increase in intersister recombination at the expense of interhomolog recombination. We suggest that Rqh1 extends hybrid DNA and biases the recombination outcome toward crossing over. Our results contrast dramatically with those from the budding yeast ortholog, Sgs1, which has a meiotic antirecombination function that suppresses recombination events involving more than two DNA duplexes. These observations underscore the multiple recombination functions of RecQ homologs and emphasize that even conserved proteins can be adapted to play different roles in different organisms. 相似文献
3.
4.
Certain genomic loci, termed hot spots, are predisposed to undergo genetic recombination during meiosis at higher levels relative to the rest of the genome. The factors that specify hot-spot potential are not well understood. The M26 hot spot of Schizosaccharomyces pombe is dependent on certain trans activators and a specific nucleotide sequence, which can function as a hot spot in a position- and orientation-independent fashion within ade6. In this report we demonstrate that a linear element (LE) component, Rec10, has a function that is required for activation of some, but not all, M26-containing hot spots and from this we propose that, with respect to hot-spot activity, there are three classes of M26-containing sequences. We demonstrate that the localized sequence context in which the M26 heptamer is embedded is a major factor governing whether or not this Rec10 function is required for full hot-spot activation. Furthermore, we show that the rec10-144 mutant, which is defective in full activation of ade6-M26, but proficient for activation of other M26-containing hot spots, is also defective in the formation of LEs, suggesting an intimate link between higher-order chromatin structure and local influences on hot-spot activation. 相似文献
5.
Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and H3K79me3; and GC content. Previous studies have associated H3K4me3, H3K36me3, and GC content with areas of mitotic recombination. H3K14ac and H3K79me3 are novel predictions and thus represent good candidates for further experimental study. We also show nucleosome occupancy maps produced using next generation sequencing exhibit a bias at DSB hot spots and this bias is strong enough to obscure biologically relevant information. A computational approach using feature selection can productively be used to identify promising biological associations. H3K14ac and H3K79me3 are novel predictions of chromatin marks associated with meiotic DSBs. Next generation sequencing can exhibit a bias that is strong enough to lead to incorrect conclusions. Care must be taken when interpreting high throughput sequencing data where systematic biases have been documented. 相似文献
6.
During the course of meiotic prophase, intrinsic double-strand breaks (DSBs) must be repaired before the cell can engage in meiotic nuclear division. Here we investigate the mechanism that controls the meiotic progression in Schizosaccharomyces pombe that have accumulated excess meiotic DSBs. A meiotic recombination-defective mutant, meu13Delta, shows a delay in meiotic progression. This delay is dependent on rec12+, namely on DSB formation. Pulsed-field gel electrophoresis analysis revealed that meiotic DSB repair in meu13Delta was retarded. We also found that the delay in entering nuclear division was dependent on the checkpoint rad+, cds1+ and mek1+ (the meiotic paralog of Cds1/Chk2). This implies that these genes are involved in a checkpoint that provides time to repair DSBs. Consistently, the induction of an excess of extrinsic DSBs by ionizing radiation delayed meiotic progression in a rad17(+)-dependent manner. dmc1Delta also shows meiotic delay, however, this delay is independent of rec12+ and checkpoint rad+. We propose that checkpoint monitoring of the status of meiotic DSB repair exists in fission yeast and that defects other than DSB accumulation can cause delays in meiotic progression. 相似文献
7.
8.
In this issue, reveal that different meiotic recombination mechanisms predominate in fission yeast and budding yeast. Budding yeast usually form crossover recombinants through double Holliday junctions, whereas fission yeast unexpectedly appear to form crossover recombinants through single junctions. 相似文献
9.
10.
The four mammalian MutL homologs (MLH1, MLH3, PMS1, and PMS2) participate in a variety of events, including postreplicative DNA repair, prevention of homeologous recombination, and crossover formation during meiosis. In this latter role, MLH1-MLH3 heterodimers predominate and are essential for prophase I progression. Previous studies demonstrated that mice lacking Mlh1 exhibit a 90% reduction in crossing over at the Psmb9 hot spot while noncrossovers, which do not result in exchange of flanking markers but arise from the same double-strand break event, are unaffected. Using a PCR-based strategy that allows for detailed analysis of crossovers and noncrossovers, we show here that Mlh3(-/-) exhibit a 85-94% reduction in the number of crossovers at the Psmb9 hot spot. Most of the remaining crossovers in Mlh3(-/-) meiocytes represent simple exchanges similar to those seen in wild-type mice, with a small fraction (6%) representing complex events that can extend far from the initiation zone. Interestingly, we detect an increase of noncrossovers in Mlh3(-/-) spermatocytes. These results suggest that MLH3 functions predominantly with MLH1 to promote crossovers, while noncrossover events do not require these activities. Furthermore, these results indicate that approximately 10% of crossovers in the mouse are independent of MLH3, suggesting the existence of alternative crossover pathways in mammals. 相似文献
11.
V G Korolev 《Genetika》1992,28(11):5-14
A review of research on genetic control of meiotic recombination is presented. The genes controlling different stages of meiotic recombination were revealed. Possible relationship of the gene products with the process of genetic recombination is under discussion. 相似文献
12.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination. 相似文献
13.
We have studied the relationship between DNA replication and recombination in Schizosaccharomyces pombe using two-dimensional gel electrophoresis and functional analysis. Our results indicate that the activation of replication origins (ORIs) during the mitotic cell cycle is associated with the generation of joint DNA molecules between sister chromatids. The frequency of integration by homologous recombination was up to 50-fold higher than the genomic average within a narrow window overlapping the ars1 replication initiation site. The S. pombe rad22Delta, rhp51Delta, and rhp54Delta mutants, deficient in mitotic recombination, activate ORIs very inefficiently and accumulate abnormal replication intermediates. These results focus on the general link between replication and recombination previously found in several systems and suggest a role for recombination in the initiation of eukaryotic DNA replication. 相似文献
14.
Brachet E Sommermeyer V Borde V 《Biology of the cell / under the auspices of the European Cell Biology Organization》2012,104(2):51-69
Meiotic recombination lies at the heart of sexual reproduction. It is essential for producing viable gametes with a normal haploid genomic content and its dysfunctions can be at the source of aneuploidies, such as the Down syndrome, or many genetic disorders. Meiotic recombination also generates genetic diversity that is transmitted to progeny by shuffling maternal and paternal alleles along chromosomes. Recombination takes place at non-random chromosomal sites called 'hotspots'. Recent evidence has shown that their location is influenced by properties of chromatin. In addition, many studies in somatic cells have highlighted the need for changes in chromatin dynamics to allow the process of recombination. In this review, we discuss how changes in the chromatin landscape may influence the recombination map, and reciprocally, how recombination events may lead to epigenetic modifications at sites of recombination, which could be transmitted to progeny. 相似文献
15.
Choi ES Strålfors A Castillo AG Durand-Dubief M Ekwall K Allshire RC 《The Journal of biological chemistry》2011,286(26):23600-23607
The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-A(Cnp1) chromatin establishment, but the underlying features governing where CENP-A(Cnp1) chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-A(Cnp1) associates with gene promoters where histone H3 is depleted by the activity of the Hrp1(Chd1) chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-A(Cnp1) chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-A(Cnp1). 相似文献
16.
The formation of heteroduplex DNA features prominently in all models for homologous recombination. A central intermediate in the current double-strand break repair model contains two Holliday junctions flanking a region of heteroduplex DNA. Studies of yeast meiosis have identified such intermediates but failed to detect associated heteroduplex DNA. We show here that these intermediates contain heteroduplex DNA, providing an important validation of the double-strand break repair model. However, we also detect intermediates where both Holliday junctions are to one side of the initiating DSB site, while the intervening region shows no evidence of heteroduplex DNA. Such structures are not easily accommodated by the canonical version of the double-strand break repair model. 相似文献
17.
Natural meiotic recombination hot spots in the Schizosaccharomyces pombe genome successfully predicted from the simple sequence motif M26 下载免费PDF全文
The M26 hot spot of meiotic recombination in Schizosaccharomyces pombe is the eukaryotic hot spot most thoroughly investigated at the nucleotide level. The minimum sequence required for M26 activity was previously determined to be 5'-ATGACGT-3'. Originally identified by a mutant allele, ade6-M26, the M26 heptamer sequence occurs in the wild-type S. pombe genome approximately 300 times, but it has been unclear whether any of these are active hot spots. Recently, we showed that the M26 heptamer forms part of a larger consensus sequence, which is significantly more active than the heptamer alone. We used this expanded sequence as a guide to identify a smaller number of sites most likely to be active hot spots. Ten of the 15 sites tested showed meiotic DNA breaks, a hallmark of recombination hot spots, within 1 kb of the M26 sequence. Among those 10 sites, one occurred within a gene, cds1(+), and hot spot activity of this site was confirmed genetically. These results are, to our knowledge, the first demonstration in any organism of a simple, defined nucleotide sequence accurately predicting the locations of natural meiotic recombination hot spots. M26 may be the first example among a diverse group of simple sequences that determine the distribution, and hence predictability, of meiotic recombination hot spots in eukaryotic genomes. 相似文献
18.
Changes in chromatin structure at recombination initiation sites during yeast meiosis. 总被引:27,自引:6,他引:27 下载免费PDF全文
Transient double-strand breaks (DSBs) occur during Saccharomyces cerevisiae meiosis at recombination hot spots and are thought to initiate most, if not all, homologous recombination between chromosomes. To uncover the regulatory mechanisms active in DSB formation, we have monitored the change in local chromatin structure at the ARG4 and CYS3 recombination hot spots over the course of meiosis. Micrococcal nuclease (MNase) digestion of isolated meiotic chromatin followed by indirect end-labeling revealed that the DSB sites in both loci are hypersensitive to MNase and that their sensitivity increases 2- to 4-fold prior to the appearance of meiotic DSBs and recombination products. Other sensitive sites are not significantly altered. The study of hyper- and hypo-recombinogenic constructs at the ARG4 locus, also revealed that the MNase sensitivity at the DSB site correlates with both the extent of DSBs and the rate of gene conversion. These results suggest that the local chromatin structure and its modification in early meiosis play an important role in the positioning and frequency of meiotic DSBs, leading to meiotic recombination. 相似文献
19.
Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. 总被引:18,自引:1,他引:18 下载免费PDF全文
The HIS4LEU2 meiotic recombination hot spot specifies two double-strand break (DSB) sites, I and II. Results presented demonstrate that DSBs at site I occur at many positions throughout a region of approximately 150 bp; we infer that breaks occur in a sequence non-specific fashion. Single-strand nicks at sites I and II are not detectable. Analysis of the effects of a 36 bp linker insertion at site I reveals the existence of communication along and between homologs prior to DSB formation. In cis, the insertion allele causes an increase in DSBs at site I but a decrease in DSBs at site II. In trans, two effects are observed. One effect likely reflects very early pre-DSB interhomolog interactions; the second is suggestive of a later, more intimate interaction in which sites I and II on the two homologs all compete for DSBs. The existence of interhomolog interactions in early meiotic prophase can explain how the sites of crossovers come to lie between the homolog axes at pachytene. 相似文献